
Enhancements on Static Load-balancing Scheme
for Parallel Numerical Simulations

Graduate Advisor: Shuichi Ichikawa 931714 Yoshikatsu Fujimura

１． Introduction
Ichikawa[1] showed that the static load-balancing scheme of

parallel numerical simulation language NSL is modeled as a

combinatorial optimization problem, which can be solved by

branch-and-bound method. However, this scheme is only ap-
plicable in case m� n holds, where m is the number of blocks

and n is the number of processors. Though virtual processor

approach[2] can alleviate this problem, it does not give the best
solution. More general approach is desired.

This paper presents a new static load-balancing scheme that

can handle the case of m � n. The problem is modeled as a
packing problem and is solved by branch-and-bound method.

This paper also presents some e�ective approximation algo-

rithms that give good approximations.

２． Model
This paper adopts the calculation model based on the

Procedure-1 described by Ichikawa[1]. Computational domain
consists of m rectangular blocks, each of which is processed in

parallel. Each processor handles one or more blocks, because

m � n is assumed here. Communication is required between
blocks to exchange data on border, but the communication be-

tween the blocks allocated in the same processor is accounted

as zero. The processing time of a block is given by the sum of
calculation time and communication time. The processing time

of a processor is the sum of the processing time of the allocated

blocks. Total processing time is determined by the biggest of
the processing time of all processors. The problem is to �nd

the allocation of m blocks among n processors to make total

processing time minimal. This incurs O(nm) search space.

３． Approximation Algorithm
This optimization problem can be solved by branch-and-

bound method. For practical use of branch-and-bound method,
good approximation algorithms are essential. This paper pro-

pose �ve approximation algorithms that take both calcula-

tion time and communication time into consideration (Ap-
prox1,...,Approx5). Further improvement by local search (Lo-

cal) is attempted. Best E�ort method, which applies a couple

of approximation algorithms and takes the best result from
them, is also evaluated.

４． Result
Figure 1 shows the accuracy of algorithms for various num-

bers of blocks. The results in Figure 1 are normalized by the

optimal solution. Each block is set to square of random gen-

erated size in simulations. The number of processor is 4, pro-
cessing rate of processors is uniform. Approx5 gives a good

approximation solution. Local search seems e�ective. The er-

rors of Approx5, Approx5+Local and Best E�ort are all less
than 10 % with 4 processors and 32 blocks.

In case of more than 32 blocks, the problem is too hard

to �nd optimization solutions. Therefore, the results shown in
Figure 2 are normalized by the Best E�ort method. Also in this

case, Approx5 and Approx5+Local give good approximation

solutions. Local search is still e�ective.
Figure 3 shows the execution time of approximation algo-

rithms. \Optimization" is the time to �nd optimal solutions

by branch-and-bound method. It is shown that approximations
are derived in rather shorter (and practical) time. Approx5 and

Approx5+Local are e�ective yet from this point of view.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

4 8 12 16 20 24 28 32

a
c
c
u
ra

c
y

number of block

Approx1
Approx2
Approx3
Approx4
Approx5

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

4 8 12 16 20 24 28 32

a
c
c
u
ra

c
y

number of block

Approx1+Local
Approx2+Local
Approx3+Local
Approx4+Local
Approx5+Local

Best Effort

Figure 1: Accruracy of algorithms

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

50 100 150 200 250

a
c
c
u
ra

c
y

number of block

Approx1
Approx2
Approx3
Approx4
Approx5

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

50 100 150 200 250

a
c
c
u
ra

c
y

number of block

Approx1+Local
Approx2+Local
Approx3+Local
Approx4+Local
Approx5+Local

Figure 2: Relative evaluation of algorithms

1e-04
1e-03
1e-02
1e-01
1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06
1e+07

50 100 150 200 250

ti
m

e
 [
s
e
c
]

number of block

Approx1
Approx2
Approx3
Approx4
Approx5

optimization

1e-04
1e-03
1e-02
1e-01
1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06
1e+07

50 100 150 200 250

ti
m

e
[s

e
c
]

number of block

Approx1+Local
Approx2+Local
Approx3+Local
Approx4+Local
Approx5+Local

Best Effort
optimization

Figure 3: Execution time of algorithms

Even in case of heterogeneous processors, results are similar

to the case of uniform processors.

５． Conclusion
It is still di�cult to get a good load-balance when dispersion

of calculation time is very big among blocks. To overcome this

problem, automatic data partitioning is required, as described

in the paper [1]. A new method that applies both automatic

partitioning and scheduling are desired.

References

[1] S.Ichikawa，T.Kawai，T.Shimada: Static Load Balancing

for Parallel Numerical Simulation by Combinatorial Opti-

mization，Trans. IPS. Japan ，Vol.39，No.6，pp.1746-1756
(1998)．

[2] S.Ichikawa，T.Kawai，T.Shimada: Enhanced Optimization

Scheme for Parallel PDE Solver of NSL，Proc. JSPP '98，
p.143 (1998)．


