
FPGA Accelerator for Subgraph Isomorphism Problem
Graduate Advisor: Shuichi Ichikawa 967751 Udorn Lerdtanaseangtham

1 Introduction
Subgraph isomorphism is applicable to various applica-
tions, including scene analysis and chemical structural for-
mula database[1]. However, subgraph isomorphism prob-
lem is generally NP complete and hard to compute prac-
tically. Custom computing machinery is a promising ap-
proach to mitigate such problem[2].

Ullmann’s algorithm[1], which is one of the most pop-
ular algorithm for subgraph isomorphism, can be imple-
mented by combinatorial logic circuit, but it requires too
much circuitry for practical use. Konishi[3] proposed a
simple algorithm which is suited for hardware implementa-
tion. Though Konishi’s algorithm is worse on search space
reduction than Ullmann’s algorithm, it is simple enough
for the implementation on a state-of-the-art FPGA to get
performance acceleration. Konishi[3] predicted that the
custom circuitry operating at 33 MHz would show 10–50
times better performance than the software of Ullmann’s
algorithm on 333MHz Pentium-II.

This paper presents the implementation of Konishi’s al-
gorithm on OPERL board with Lucent OR2C 2C15A F-
PGA. The measured performance of the hardware is also
shown.

2 Implementation
We implemented 2 units of Konishi’s algorithm on an
OR2C15A FPGA (Fig.1). Unit0 and Unit1 operate in
parallel for twice throughput. Interface circuit decodes
address to select the corresponding unit, to control and
initialize the units, and to poll units for the status.

Each unit consists of tree-traversing circuit and edge-
check circuit. The tree-traversing circuit enumerates pos-
sible combinations of vertices between graph Gα and Gβ .
The edge-check circuit checks the correspondence of edges
from Gα to Gβ . This hardware can handle Gα, Gβ of max-
imally 15 vertices. The hardware resource and operating
frequency are summarized in Table 1. PFU is a basic logic
element of OR2C FPGA. An OR2C15A chip consists of
400 PFUs.

3 Evaluation
The measured performance of hardware (2 unit) is shown
in Figure 2 for various number of vertices pα, pβ when the
edge density edα, edβ are both 0.4. The specification of
host computer is as follows: AMD K6-III 400MHz, 64MB
main memory, gcc-2.7.2.1, with FreeBSD-2.2.1R. In Fig-
ure 2, the performance is shown as a ratio to the per-
formance of software of Ullmann’s algorithm executed on
Intel Pentium-II 400MHz, 256MB main memory, gcc-2.8.1
with FreeBSD-3.1R. The software of Ullmann’s algorithm
was written in C language.

In Figure 2, the performance ratio is about 10–40 in the
best case. On the other hand, performance is less than 1 in
some cases, because the pruning ability of Konishi’s algo-
rithm is less than Ullmann’s algorithm. In such a case, we
had better use the software implementation of Ullmann’s
algorithm on host computer for better performance.

The cooperative approach is a method that can over-
come such problem. In cooperative approach, the hard-
ware will be used only when the performance ratio is ex-
pected to be greater than 1. Otherwise, the host processor
performs Ullmann’s algorithm to solve subgraph isomor-
phism problem. To predict which one would be better, the
statistical data for various pα, pβ , edα and edβ are used.
Figure 3 shows the performance of cooperative approach,
which shows better performance than Figure 2.

Interface
circuit

Tree-
traversing

Circuit

Edge-check
Circuit

Konishi s Algorithm Circuit (Unit0)

(Unit1)

PCI
Interface

Tree-
traversing

Circuit

Edge-check
Circuit

Konishi s Algorithm Circuit

Figure 1: Block Diagram of Accelerator

Table 1: Hardware Resource and Operating Frequency
Circuit Number of PFUs Frequency(MHz)

Interface 23 33
Unit0, Unit1 160 16.5

0.1

1

10

100

5 6 7 8 9 10 11 12 13 14 15

ra
tio

(t
im

es
)

p(alpha)

p(beta)=15
p(beta)=14
p(beta)=13
p(beta)=12
p(beta)=11
p(beta)=10
p(beta)=9
p(beta)=8
p(beta)=7
p(beta)=6
p(beta)=5

Figure 2: Performance of Accelerator (edα, edβ) =
(0.4, 0.4)

0.1

1

10

100

5 6 7 8 9 10 11 12 13 14 15

ra
tio

(t
im

es
)

p(alpha)

p(beta)=15
p(beta)=14
p(beta)=13
p(beta)=12
p(beta)=11
p(beta)=10
p(beta)=9
p(beta)=8
p(beta)=7
p(beta)=6
p(beta)=5

Figure 3: Performance of Cooperative Approach
(edα, edβ) = (0.4, 0.4)

4 Conclusion
Hardware accelerator for subgraph isomorphism shows 10–
40 times better performance in the best case, compared
to software implementation. More performance can be
derived by pipelining hardware to operate at 33MHz. It is
also easy to implement three or more units on a large-scale
FPGA to get more performance.

References
[1] J. R. Ullmann, “An Algorithm for Subgraph Isomor-

phism,” J. ACM, Vol. 23, No. 1, pp. 31-42, 1976.
[2] Duncan A. Buell et al., “Splash 2: FPGAs in a Cus-

tom Computing Machine,” IEEE Computer Society
Press, Los Alamitos, 1996.

[3] Kouji Konishi, Shuichi Ichikawa, “An Implementa-
tion method for the Subgraph Isomorphism Judge-
ment Algorithm using FPGA,” 1999 IEICE (A-3-2),
March 1999.

[4] Shuichi Ichikawa, Toshio Shimada, “The trial and the
evaluation for the reconfigurable board added to PCI
bus,” IEICE tech. reports CPSY96-97, pp. 159-166,
1996.


