# Application and Evaluation of Optimal Configuration Estimation Scheme for Heterogeneous Clusters

Graduate Adviser : Shuichi Ichikawa

023719 Sho Takahashi

# 1 Background

Many parallel applications are targeted for clusters comprised of *homogeneous* processing elements (PEs). Since their performances are degraded by load imbalance on a *heterogeneous* cluster, it is necessary to distribute workloads considering the performance of each PE. It is a simple solution to invoke multiple processes on fast PEs (multiprocessing). Kishimoto and Ichikawa [1] constructed the execution-time estimation models from measurement results of HPL (High Performance Linpack), and showed that the (sub-)optimal configurations were actually estimated for multiprocessing. This study first examines Kishimoto's models on four applications, and then introduces a new model that is more accurate than Kishimoto's.

## 2 Execution-Time Estimation Model

#### 2.1 Kishimoto's Models

Let N be the size of the problem.  $G_i$  is a group of PEs comprised of equivalent PEs in heterogeneous cluster.  $P_i$  is the number of PEs actually used for the job in  $G_i$ .  $M_i$  is the number of processes on each PE in  $G_i$ . P is the total number of processes in the cluster; i.e.,  $P = \sum_i P_i M_i$ .  $T_i$  is the execution time of  $G_i$ , which is parameterized by N, P, and  $M_i$ . Total execution time T is estimated by  $\max_i T_i$ . The estimation function of T is designated by "execution-time estimation model" in the following discussion. Optimal configurations are estimated using the models of all possible configurations  $(P_i, M_i)$ .

In case of HPL, T is given by Eq. (1), and thus  $T_i$  for  $\exists (P_i, M_i)$  is represented by Eq. (2). Constant factors  $k_0, ..., k_3$  are determined from the measurement results by the least squares method. This model is designated by N-T model [1].

It takes long time to construct N-T models, because they are constructed for all possible configurations  $(P_i, M_i)$ . We can reduce the number of models by integrating N-T models into one new model that includes P as a parameter. Assuming that  $T_i$  is independent of the target of communication, this new model is given by Eq. (3), which is designated by P-T model. It takes shorter time to construct P-T models than N-T models, because P-T models are constructed from the measurements on  $G_i$ s. Constant factors are extracted from the corresponding N-T models (PEs  $\geq 2$ ).

$$T(N,P) = \frac{1}{P} \cdot O(N^3) + P \cdot O(N^2) + O(N^2)$$
(1)

$$T(N)|_{P,Mi} = k_0 N^3 + k_1 N^2 + k_2 N + k_3$$
(2)

$$T_i(N,P)|_{Mi} = \frac{k_0}{P} \cdot T_i(N)|_{P,Mi} + k_1 P \cdot T_i(N)|_{P,Mi} + k_2$$
(3)

#### 2.2 NP-T Model

3

Equation (1) is transformed to Eq. (4), using parameters N and P. This model is designated by NP-T model. An NP-T model includes more constat factors, and thus is expected to be more accurate than a P-T model. Since NP-T models can be constructed from the measurements on  $G_i$ , their construction time is the same as P-T models.

$$T_{i}(N,P)|_{Mi} = \frac{1}{P} \cdot (k_{0}N^{3} + k_{1}N^{2} + k_{2}N + k_{3}) + P \cdot (k_{4}N^{2} + k_{5}N + k_{6}) + k_{7}N^{2} + k_{8}N + k_{9}$$
(4)  
Evaluation Methods

In this study, the following four benchmarks are examined on the heterogeneous cluster shown in Table 1. Table 2 summarizes the problem sizes (N) for measurement and evaluation. For each benchmark, N-T, P-T, and NP-T models are constructed and used to estimate the optimal configuration.

**HimenoBMT** measures the performance to solve Poisson's equation by Jacobi iteration for  $N \times N \times N$  domain.

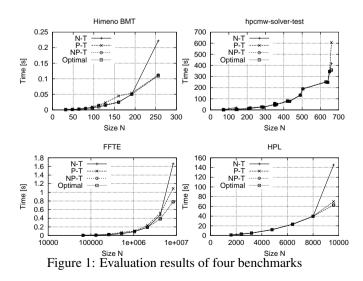
**Hpcmw-solver-test** is a benchmark for finite element method.  $N \times N \times 1$  domain is examined here.

- **FFTE** computes FFT of  $N = 2^p 3^q 5^r$ . In this study, N is fixed to  $2^p$ . Since the process allocation is different when P contains a factor of 3 or 5, P-T and NP-T models for these cases are constructed separately.
- **HPL** is a linear algebraic system benchmark. HPL is examined here to compare with Kishimoto's results.

| Table 1: Evaluation environment  |                                              |                                  |
|----------------------------------|----------------------------------------------|----------------------------------|
|                                  | $G_1$                                        | $G_2$                            |
| PE                               | Xeon 2.8 GHz                                 | Celeron M 1.5 GHz                |
| OS                               | Redhat Linux 9                               | FedoraCore 3                     |
| Compiler, Library                | gcc 3.2.2, ifc 8.1, mpich-1.2.6 (Buffer 8KB) |                                  |
| $P_i$                            | $1 \le P_1 \le 8$                            | $0 \le P_2 \le 8$                |
| $M_i$                            | $1 \le M_1 \le 2$                            | $0 \le M_2 \le 1$                |
| Table 2: Measurement sizes $(N)$ |                                              |                                  |
|                                  |                                              |                                  |
|                                  | Measurement                                  | Evaluation                       |
| HimenoBMT                        | Measurement<br>32~192 9 sets                 |                                  |
| HimenoBMT<br>hpcmw-solver-test   | 32~192 9 sets<br>70 504 7 sets               | 32~256 10 sets<br>70~660 20 sets |
|                                  | 32~192 9 sets                                | 32~256 10 sets<br>70~660 20 sets |

#### 4 Evaluation results

Figure 1 summarizes measured execution times of the estimated optimal configurations and the actual optimal configurations for various sizes.


For HPL and hpcmw-solver-test, (sub-)optimal configurations were estimated with NP-T models. Though N-T and P-T models also found (sub-)optimal configurations for interpolated N, their errors increased for extrapolated N, because parameter extraction fails for some cases.

For HimenoBMT, the estimation of P-T models and N-T models degraded at N = 160 and N = 256, respectively. NP-T models successfully estimated optimal or sub-optimal configurations for HimenoBMT.

For FFTE, the errors of N-T and P-T models become larger as N increases. NP-T models succeeded to estimate optimal or sub-optimal configurations.

In summary; Kishimoto's models degraded on some applications, while NP-T models succeeded to find better configuration for more applications.

In this study, a heterogeneous cluster with two kinds of processors was examined. The evaluations with more heterogeneous environment are left for future studies.



### References

 Kishimoto, Y. and Ichikawa, S.: Optimizing the Configuration of a Heterogeneous Cluster with Multiprocessing and Execution-Time Estimation, *Parallel Computing*, Vol. 32, No. 7, pp. 691–710 (2005).