
11

Converting PLC instruction sequence into logic circuit:
implementation and evaluation

Graduate Adviser: Shuichi Ichikawa 033701 Masanori Akinaka

1 Introduction
PLC (Programmable Logic Controller) is a kind of computer,

which has been widely adopted for sequence control of industrial
machinery. Though PLC is flexible and well-established, the perfor-
mance of PLC does not always satisfy the requirements in large and
highly responsive systems. Another problem of PLC is that a PLC
program is easy to duplicate and to analyze. This often results in the
leakage of valuable trade secrets and the rise of clone products.

Recently, it has been proposed to implement a PLC program with
hard-wired logic using FPGA (Field Programmable Gate Array) [1].
Since FPGA is a reconfigurable logic LSI, the response time can be
improved together with flexibility of PLC. It should be also noted that
FPGA is more secure than PLC in protecting intellectual properties,
because it is more difficult to analyze an FPGA design than to ana-
lyze a PLC program, and some recent FPGA devices provide design
security features.

This study presents a converter, which translates PLC instruction
sequence into logic description in VHDL. The evaluation results of
the converter are also presented with sample PLC programs of actual
products. The preliminary version of this study was presented in ISIE
2006 [2].

2 Translation of PLC program to logic circuit
The ladder diagram has been widely accepted to describe PLC

programs. A ladder diagram consists of one or more rungs, each of
which consists of a condition part and a process part (Fig.1). Either
the condition part or the process part can be an output (a) or an in-
struction (b). Rungs are ordered, and interpreted in due order. When
the end is uncounted, the ladder is executed all over again from the
first rung. The time repeated once is called scan time. By making the
scan time shorter, the system becomes more responsive.

To generate a logic circuit that literally simulates a whole ladder
program, it is straightforward to design a sequential circuit, which
activates one rung for each cycle in due order. This design is called
Sequential Design (SD).

It is possible to execute two or more rungs in parallel, if depen-
dences among rungs are properly maintained. Figure2 shows an ex-
ample of data dependence, where the output of the upper rung is re-
ferred by the lower rung. In such cases, it is essential to execute the
upper rung before the lower rung to derive the same result as in the
original ladder diagram. By dispatching each rung to the earliest cy-
cle possible (while keeping all dependence), the clock cycles required
for each scan can be reduced. This design is called Levelized Design
(LD).

It is not necessary to allocate one cycle to each level, but it is
possible to implement the ladder program by a combinatorial logic
circuit, by removing the internal memory element between the levels
of LD. This design is called Flat Design (FD). Each scan is imple-
mented by a single state in this design.

When external device IO instructions are included in the PLC
program, inputs and outputs to external device have to be performed
immediately with BFM (buffer memory). Thus, an additional state
for inputs and outputs is necessary in FPGA.

In the abovementioned designs, the arithmetic units are generated
as many as the arithmetical instructions in PLC program. In SD and
LD, however, all arithmetic units are not used at simultaneously. The
logic scales are hence reducible by sharing the arithmetic unit.

3 Implement and evaluation
The conversion techniques described in Section 2 were imple-

mented, and evaluated with sample programs for Mitsubishi FX2N

input

output

input

instruction

condition process

(a)

(b)

Fig. 1: Overview of ladder
diagram

X001

Y002

Y002

Y003

Fig. 2: An example of
data dependence

Tab. 1: Evaluation results of sample ladder program A
Device Design Arithmetic Num. of Max. freq. Logic scale Scan time

unit states [MHz] [ALUTs] [sec.]

PLC — — — — — 1.61× 10−3

FPGA SD dedicated 74 8.21 5,848 9.01× 10−6

shared 74 6.10 2,863 1.21× 10−5

LD dedicated 12 7.57 5,686 1.59× 10−6

shared 17 6.88 2,716 2.47× 10−6

FD dedicated 1 4.67 4,625 2.14× 10−7

Tab. 2: Evaluation results of sample ladder program Y
Device Design Arithmetic Num. of Max. freq. Logic scale Scan time

unit states [MHz] [ALUTs] [sec.]

PLC — — — — — 4.64× 10−2

FPGA SD dedicated 415 16.08 3,554 2.58× 10−5

shared 415 8.04 4,148 5.16× 10−5

LD dedicated 76 16.02 2,864 4.74× 10−6

shared 76 7.81 3,445 9.73× 10−6

FD dedicated 63 13.64 2,643 4.62× 10−6

PLC. In this study, the target device was set to Altera StratixII FPGA
(EP2S60F672C5ES with 48,352 ALUTs). Logic scales and clock fre-
quencies were estimated by Altera Quartus II 6.0SP1, where the opti-
mization options were set to default (balanced). The design that gen-
erates one arithmetic unit for each arithmetical instruction is shown
as “dedicated” in Tables1 and 2. The design that limits the number
of arithmetic units of each kind (adder/subtracter, multiplier, and di-
vider) to 1, is shown as “shared”. The scan time of FPGA is estimated
by the estimated maximum operational frequency and the number of
states of the circuit. The scan time of PLC was estimated on the as-
sumption that all condition parts are executed.

Table1 summarizes the evaluation results of a PLC program, which
includes 165 instructions, including 6 add/subtract instructions, 12
multiply instructions, and 9 divide instructions. LD (dedicated) is 5.7
times faster than SD (dedicated), and FD is 42.1 times faster than
SD (dedicated). This program is highly concurrent to control many
outputs. Consequently, the number of state decreased to 16% by par-
allelization. When the arithmetic units were shared, the logic scale
decreased to 49% in SD, and to 48% in LD.

Table2 lists the evaluation results of a sample PLC program, which
is the control program of a product under development. This PLC
program includes 1303 instructions, which include 5 add/subtract in-
structions, 11 multiply instructions, and 2 divide instructions. LD
(dedicated) is 5.4 times faster than SD (dedicated). Although FD is
5.6 times faster than SD (dedicated), it is hardly different from LD
(dedicated). Since many external device IO instructions are included
in this sample, there are many additional states for inputs and out-
puts. In FD, the number of states is almost the same as LD’s. When
the arithmetic units were shared, the logic scale increased to 117%
in SD, and to 120% in LD. This was caused by the multiplexer and
the general-purpose arithmetic unit additionally generated for sharing.
When the program includes a small number of arithmetic instructions,
the logic scale can be smaller with “dedicated” design.

4 Conclusion
Among the designs proposed in this study, FD was the fastest.

However, when many external device IO instructions are included,
the merits of FD are restricted. Although logic scales are reduced by
sharing the arithmetic unit, the result depends on the property of the
target program.

The following items are left for future works: (1) the evaluation
of the proposed techniques with actual products, and (2) the enhance-
ments of our converter to support more functions.

References
[1] I. Miyazawa, T. Nagao, M. Fukagawa, Y. Itoh, T. Mizuya, and T.

Sekiguchi: “Implementation of ladder diagram for programmable con-
troller using FPGA,” in Proc. 7th IEEE Int’l Conf. Emerging Technolo-
gies and Factory Automation (ETFA ’99), vol. 2, 1999, pp. 1381–1385.

[2] S. Ichikawa, M. Akinaka, R. Ikeda, and H. Yamamoto: “Converting
PLC instruction sequence into logic circuit: A preliminary study,” in
Proc. IEEE Int’l Symp. Industrial Electronics (ISIE ’06), 2006, pp.
2930–2935.


