不均一クラスタのための 実行時間予測モデルの構築法の改良

Improvements of Execution-time Estimation Model Construction for Heterogeneous Clusters

豊橋技術科学大学 大学院 工学研究科 知識情報工学専攻 市川研究室

011011 河合 裕

目次

1	はじめに	1
2	実行時間予測モデル	2
	2.1 最適構成予測	2
	2.2 NP-T モデル	2
	2.3 N-Tモデル	3
3	パラメータ抽出法の改良	4
	3.1 既存手法の問題点	4
	3.2 非負最小二乗法によるパラメータ抽出	4
	3.3 評価環境	5
	3.4 評価方法	8
	3.5 評価1	8
	3.6 評価 2	18
	3.7 考察	24
4	不均一クラスタからのモデル構築	26
	4.1 既存手法の問題点	26
	4.2 提案手法	26
	4.3 評価方法	26
	4.4 評価1	27
	4.5 評価 2	33
	4.6 考察	38
5	おわりに	39
A.	1評価1の測定データ	41
Α.	2評価2の測定データ	56

1 はじめに

演算性能や通信性能が異なる要素プロセッサ (PE) で構成されるクラスタを 不均一クラスタと呼ぶ.不均一クラスタは,余っている PC を集めてクラスタ を構築したり,既存クラスタに高性能 PE を追加する場合など,多くの局面で 利用可能である.しかし,既存の並列応用の多くは均一な PE を前提にしてお り,各 PE に負荷を均等に分散するため,不均一クラスタ上で実行すると低速 PE がボトルネックとなって性能が低下する.不均一クラスタ上の性能を改善す るには,PE の演算性能に応じて負荷を不均一に分散する必要がある.

不均一な負荷分散には大きく分けて二つの方法がある.ひとつは1プロセス に割り当てる問題領域の大きさを変更する方法である.しかし,この方法は応用 プログラムの書き換えが必要になるうえ,書き換えに伴うデバグや性能チュー ニングなどに大きな手間がかかる.もうひとつは,高速な PE に複数のプロセ スを起動することで負荷分散を行う方法 (マルチプロセス法)である.この方法 では応用プログラムを書き換える必要がなく,1台の PE に起動するプロセス数 を変更するだけで簡単に実現することができる.

マルチプロセス法では, どの PE にいくつプロセスを起動するかが問題となる.岸本ら¹⁾²⁾³⁾は, High-Performance Linpack Benchmark⁷⁾(HPL)の実行時間 から実行時間予測モデルを構築し,不均一クラスタ上で最適なプロセス構成を 予測できることを示した.高橋ら⁴⁾⁵⁾は,岸本らの手法を HPL 以外の科学技術 応用 (Himeno BMT⁸⁾, hpcmw-solver-test⁹⁾, FFTE¹⁰⁾)で検証するとともに,岸 本らのモデルを改良して予測精度を改善した.

しかし,これまでの手法ではモデル構築に必要な実測値が少ない場合や,実 測値に誤差が含まれる場合に,予測精度が著しく低下する場合があった.また, 均一 PE を使用して予測モデルを構築していたため,利用可能な状況が限られ ていた.本研究では,予測精度の低下を回避する手法を提案し,更に不均一ク ラスタから直接モデルを構築する方法を提案する.

1

2 実行時間予測モデル

この章では,岸本の提案した実行時間予測モデル¹⁾²⁾³⁾ とそれを改良した高橋の実行時間予測モデル⁴⁾⁵⁾の概略を示す.

2.1 最適構成予測

応用の問題サイズを N とする.不均一クラスタ中の等価な PE のグループを サブクラスタと呼び, G_i で表す. G_i 中で実際に計算に使用する PE の台数を P_i とする $(0 \le P_i \le |G_i|)$.サブクラスタ G_i 内の各 PE には同数のプロセスを起動 するものとし,この数を M_i で表す.このとき不均一クラスタ内の総プロセス 数 P は, $P = \sum_i P_i M_i$ で与えられる.

不均一クラスタ全体の実行時間を T としたとき,ある N について T を最小 化する構成 (P_i, M_i) を予測することが研究の目的である.サブクラスタ G_i の実 行時間 T_i を, N, P, M_i の関数で近似することができれば,全体の実行時間 Tは $\max_i T_i$ で見積もることができる.T の近似式を実行時間予測モデルと呼ぶ. 全ての可能な構成に対して予測モデルを構築できれば,構成 (P_i, M_i) と問題サ イズ N について, T を最小化する構成を予測することができる.

2.2 NP-T モデル

実行時間予測モデルの構築について HPL⁷⁾ を例に説明する. HPL の実行時 間は,パネルLU 分解フェイズ (*pfact*),更新フェイズ (*update*),交代代入フェ イズ (*uptrsv*) で構成される. 笹生ら⁶⁾ によれば,各フェイズの実行時間のオー ダーは式 (1), (2), (3) となる.

$$pfact = \frac{3}{2P} \cdot N^2 + O(N) \tag{1}$$

$$update = \frac{2N^3}{3P} + \frac{P+1}{P} \cdot O(N^2) + O(N)$$
 (2)

$$uptrsv = \frac{1}{P} \cdot O(N^2) \tag{3}$$

この式から,実行時間 T を N と P の関数で表せば,式 (4) となる.

$$T(N,P) = \frac{1}{P} \cdot O(N^3) + P \cdot O(N^2) + O(N^2)$$
(4)

式 (4) において, ある M_i の実行時間 T_i を N と Pの関数で表すと式 (5) になる.

$$T_{i}(N,P)|_{M_{i}} = \frac{1}{P} \cdot (k_{0}N^{3} + k_{1}N^{2} + k_{2}N + k_{3}) + P \cdot (k_{4}N^{2} + k_{5}N + k_{6}) + k_{7}N^{2} + k_{8}N + k_{9}$$
(5)

高橋ら⁴⁾⁵⁾ はこの式 (5) を NP-T モデルと名づけた.式 (5) には k_0 から k_9 までの 10 個の定数項があるが,これらの係数は実測値を用いて最小二乗法で決定する.NP-T モデルでは G_i および M_i ごとに NP-T モデルを構築する.PE が 1 台 $(P = \exists M_i)$ の場合はノード間の通信が行われなくなることを考慮して,定数項の決定には均一 PE 2 台以上の実測値を使用する.

2.3 N-T モデル

計算に使用する PE が 1 台の場合 ($P = \exists M_i$) はプロセス間の通信は行われる が、ノード間の通信は行われない.このため、ノード間の通信時間を含む実測 値で構築された NP-T モデルでは正しい実行時間が得られない. $P = \exists M_i$ の場 合には、岸本ら¹⁾²⁾³⁾ によって提案された N-T モデルを使用して実行時間予測を 行う.

式 (4) において,ある構成 (P, M_i) の実行時間 T_i を N の関数で表すと式 (6) になる.岸本らはこの式を N-T モデルと名づけた.式 (6) には k_0 から k_3 まで の4個の定数項があるが,これらの係数は $P = \exists M_i$ の実測値を用いて最小二乗 法で決定する.

$$T_i(N)|_{P,M_i} = k_0 N^3 + k_1 N^2 + k_2 N + k_3$$
(6)

3 パラメータ抽出法の改良

3.1 既存手法の問題点

実行時間予測モデルの構築には応用の実測値が必要になる.しかし,測定点数が少ない場合や実測値に誤差がある場合にはパラメータが正しく抽出されず,予測精度が低下することがある.パラメータ抽出に失敗した典型的な例を図1に示す.これはXeonの $M_i = 2$, P = 8の Himeno BMT⁸⁾のNP-T モデルとその構築に使用した実測値を示している.この実測値の性能は図2のようになっている. $N \ge 128$ で性能が低下し,実測値が大きくなっている.このように性能が低下する点を性能グリッチと呼ぶ.性能グリッチが含まれるためにパラメータ抽出の結果,Nの高次の係数が負の値となっている.その結果,外挿範囲のN > 192で予測時間が急激に小さくなり,N = 256では予測時間が負の値になっている.本研究ではこのようなケースをモデルの破綻と呼ぶ.モデルの破綻が生じるとその構成の予測実行時間が最小となり,最適構成として予測されてしまうため,真の最適構成が予測できない.

3.2 非負最小二乗法によるパラメータ抽出

予測時間が負の値となる原因は、パラメータ k_i が負の値になってしまうから である.これを解決するためには、モデルの各パラメータ $k_0, k_1, ... \ge 0$ という 条件をつければよい.これは、計算時間や通信時間が単調増加すると考えれば、 妥当な制限である.そこで本研究では、抽出されるパラメータに非負制約を付 けた非負最小二乗法¹²⁾を用いることを試みる.図3は図1の実測値から非負最 小二乗法を使用してパラメータを抽出した場合のNP-Tモデルである.非負最 小二乗法を使用してモデルを構築すると,負の実行時間が予測されなくなり,極端な精度低下を防ぐことが期待できる.

一方,非負最小二乗法でパラメータを抽出すると,通常の最小二乗法で抽出 したモデルよりも一般に残差が大きくなる.そのため,大きなモデル破綻が防 げる代わり,予測精度が低下する可能性がある.これについて実際に評価して 優劣を比較する必要がある.

3.3 評価環境

実行時間予測モデル構築には,応用の問題サイズ N と総プロセス数 P が変更 可能である必要がある.今回の実験では,上記の条件を満たす次の4つのベン チマークを評価対象とした.

- HPL⁷⁾ 分散メモリ並列計算機用のLinpackベンチマークで,倍精度浮動小数点 演算で線形代数方程式を解く性能を測定する.計算ライブラリにはATLAS 3.6.0を使用する.
- Himeno BMT⁸⁾ 非圧縮流体解析コードのベンチマークで, Poisson 方程式を Jacobi 反復法で解く性能を測定する.配布ファイルでは問題サイズが固定 されているため,本研究ではヘッダファイルを書き換えて問題サイズを任 意の $N \times N \times N$ に変更して測定を行う.
- hpcmw-solver-test⁹⁾ 3次元弾性解析を評価するベンチマークで,有限要素法で問題を解く性能を測定する.本研究ではスカラープロセッサ用,分散メモリ型用のプログラムを使用する.hpcmw-solver-test は本来, N×N×N の3次元の問題を扱うが,主記憶容量,実行時間の都合から本研究ではN×N×1の2次元の問題を扱う.また,問題サイズNは総プロセス数P

で割り切れる必要があるため,本研究ではモデル構築用の実測の問題サイズは $N_k = P \times \left[\frac{60 \times k}{P}\right] (k = 1 \sim 7)$ とする.評価は実行可能な構成についてのみ行う.

FFTE¹⁰⁾ $2^{p_3q_5r}$ 要素の複素離散フーリエ変換を行うライブラリで,本研究では同梱されている1次元DFTのテストプログラムを実験に用いる.FFTEでは問題サイズ N と総プロセス数 P は2のべき乗に制限されている.また,N と P は $\frac{N}{P} \leq 2^{20}$ に制限されている.そのため,本研究では実行可能な構成についてのみ評価を行う.

上記の4つのベンチマークプログラムは高橋ら⁴⁾⁵⁾ によって評価されたもので, 今回の実験では追試および比較を目的として評価に用いた.岸本らによって求 められた HPL の N-T モデル式と,高橋らによって求められた Himeno BMT, hpcmw-solver-test,FFTEのN-T モデル式を表4にまとめる.高橋らによって 求められた NP-T モデル式を表5に示す.

評価には表1の不均一クラスタを使用した.今回の実験では計算時間への影響を避けるため,Xeon およびPentium 4のHyper Threading は使用しない.また,ネットワークトポロジによる影響を避けるため,全てのPEを一台のワイヤスピードスイッチに接続している.

応用のプロセス配置は, MPICH¹¹⁾のプロセスリストで指定する.プロセス リストをシェルスクリプトで作成し, -p4pgオプションをつけて mpirun コマン ドを実行する.本研究の実験では,プロセスは各サブクラスタごとに順番に割 り当てる.例として,プロセス構成 $(P_1, M_1, P_2, M_2, P_3, M_3) = (2, 3, 4, 1, 0, 0)$ の ときのプロセス配置を表 2 に示す.

モデル構築のための測定および評価は,表3の問題サイズで行う.評価はモ デル構築時の測定に2点から5点を追加し,外挿についても行う.非負最小二 乗法は文献12)で紹介されているものを使用し,最小二乗法は先行研究で用い られている GSL¹³⁾のgsl_multifit_linear()を使用する.

本研究では,手法の有効性を確認するために PE 台数構成が異なる 2 つ環境 で評価を行う.モデル構築に必要な実測値の測定構成および評価時の測定構成 は 3.5 節と 3.6 節で述べる.

6

	サブクラスタ G_1	サブクラスタ G_2	サブクラスタ G_3		
CPU	Pentium 4 3.6GHz	Xeon 2.8GHz	Celeron M 1.5GHz		
メモリ	1GB	1GB	1GB		
NIC	1000BASE-T	1000BASE-T	1000BASE-T		
OS	Fedora Core 4	Red Hat Linux 9	Fedora Core 5		
C コンパイラ	Intel C/C++ Compiler 9.0				
Fortran コンパイラ	Intel Fortran Compiler 9.0				
通信ライブラリ	mpich 1.2.7p1				

表1 評価環境

表2_プロセスの配置

ノロセス	ノード
process0	G_1 node0
process1	G_1 node0
process2	G_1 node0
process3	G_1 node1
process4	G_1 node1
process5	G_1 node1
process6	G_2 node0
process7	G_2 node1
process8	G_2 node2
process9	G_2 node3

表3 問題サイズ					
ベンチマーク	モデル構築時	評価時			
HPL	400~6400 (9 点)	400~9600 (11 点)			
Himeno BMT	32~192 (9 点)	32~256 (11 点)			
hpcmw-solver-test	60~442 (7 点)	60~600 (12 点)			
FFTE	$2^{12} \sim 2^{20} (9 点)$	2 ¹² ~2 ²³ (12 点)			

表4 N-T モデル¹⁾²⁾³⁾⁴⁾⁵⁾

ベンチマーク			モデル式
HPL	$T_i(N) _{P,M_i}$	=	$k_0 N^3 + k_1 N^2 + k_2 N + k_3$
Himeno BMT	$T_i(N) _{P,M_i}$	=	$k_0 N^3 + k_1 N^2 + k_2 N + k_3$
hpcmw-solver-test	$T_i(N) _{P,M_i}$	=	$k_0 N^3 + k_1 N^2 + k_2 N + k_3$
FFTE	$T_i(N) _{P,M_i}$	=	$k_0 N \log N + k_1 N + k_2 N^{\frac{1}{3}} + k_3$

$\overline{\mathbf{x}}$ 3 NP-1 $\overline{\mathbf{\tau}}$ $\overline{\mathbf{y}}$					
ベンチマーク			モデル式		
HPL	$T_i(N,P) _{M_i}$	=	$\frac{1}{P} \cdot (k_0 N^3 + k_1 N^2 + k_2 N + k_3)$		
		+	$P \cdot (k_4 N^2 + k_5 N + k_6)$		
		+	$k_7 N^2 + k_8 N + k_9$		
Himeno BMT	$T_i(N,P) _{M_i}$	=	$\frac{1}{P} \cdot (k_0 N^3 + k_1 N^2 + k_2 N + k_3)$		
		+	$k_4 N^2 + k_5 N + k_6 + k_7 \log P$		
hpcmw-solver-test	$T_i(N,P) _{M_i}$	=	$\frac{1}{P} \cdot (k_0 N^3 + k_1 N^2 + k_2 N + k_3)$		
		+	$k_4 N^2 + k_5 N + k_6 + k_7 \log P$		
FFTE	$T_i(N,P) _{M_i}$	=	$\frac{1}{P} \cdot \left(k_0 N \log N + k_1 N + k_2\right)$		
		+	$k_3P + k_4N + k_5N^{\frac{1}{3}} + k_6$		

§5 NP-T モデル⁴⁾⁵⁾

3.4 評価方法

評価は予測最適構成と予測実行時間について行う.

通常の最小二乗法と非負最小二乗法でモデルを構築し,予測実行時間が最小 となる構成(予測最適構成)を求める.また,全ての可能な構成で測定を行い, 実測実行時間が最小となる構成(実測最適構成)を求める.予測最適構成の実測 実行時間を $\hat{\tau}$,実測最適構成の実測実行時間を \hat{T} で表す.

予測最適構成の予測精度は $\hat{\tau} \geq \hat{T}$ の誤差 $\frac{\hat{\tau}-\hat{T}}{\hat{T}}$ で評価する.予測最適構成が実 測最適構成と一致していれば,誤差は 0%となる.岸本¹⁾²⁾³⁾ と高橋⁴⁾⁵⁾ にならい, 誤差が 20%未満となる構成を準最適構成と呼ぶ.

予測実行時間の評価は,ある構成の予測実行時間を τ としたとき, $\tau \leq 2\hat{T}$ を満たす構成についての予測時間と実測時間の相関係数で行う.実行時間が最適構成から大きく掛け離れた構成まで含めると,最適構成予測で重要な実行時間の小さい構成の精度が正しく評価できないためである.予測時間と実測時間がずれていてもその分布に正の相関があれば,最適構成の予測は可能であるため,相関係数での評価は妥当である.

最適構成の予測結果および相関係数の表は付録にまとめて記載する.また,抽 出されたパラメータk_iも同様に付録に記載する.以降では実測時間の図と相関 係数の図を記載する.

3.5 評価1

この節ではプロセッサ3種類,8台の不均一クラスタで評価を行う.測定構成 を表6に示す.組合せ総数はHPL,Himeno BMT,hpcmw-solver-testでは188 通り,FFTE はプロセス数に制限があるため53通りとなる. 2.2 節で述べたように,実行時間予測モデルの構築には均一のPEを使用する. この節の実験では均一PE8台を使って実行時間を測定し,実行時間予測モデル を構築する.HPL,HimenoBMT,hpcmw-solver-testは $P_i = 2, ..., 8$ (Pについ て7点)の実測値,FFTEはPに制限があるため $P_i = 2, 4, 8$ (Pについて3点) の実測値でモデルを構築する.

表6 測定構成

	G_1	G_2	G_3	組合せ総数
<i>P</i> _i の範囲	$0 \le P_1 \le 2$	$0 \le P_2 \le 4$	$0 \le P_3 \le 2$	188
M_i の範囲	$0 \le M_1 \le 3$	$0 \le M_2 \le 2$	$0 \le M_3 \le 1$	(FFTE は 53)

3.5.1 最適構成予測に必要な時間

最適構成予測の手順は次のようになる.

- (1) モデル構築に必要な実測値を測定する.
- (2) モデル式中の係数を実測値から最小二乗法で決定する.
- (3) すべての構成 (P_i, M_i) の実行時間を予測を予測し,予測実行時間が最小
 となる構成を予測最適構成とする.

これらの手順に要した時間を表7にまとめる.測定時間はモデル構築に必要な 実測値の総測定時間,抽出時間は実測値からパラメータを抽出する時間,探索時 間は可能な全ての構成の予測時間を求め最小となる構成を探索する時間である.

非負最小二乗法の抽出時間が通常の最小二乗法の抽出時間よりも小さくなっているが,この原因は最小二乗法のGSLがダイナミックリンクしているのに対して非負最小二乗法はスタティックリンクしているためだと考えられる.その 実行時間は小さく,実用上問題とはならない.

モデルは各*G_i*, *M_i*ごとに構築するため, PEの種類や台数が増加しても測定 時間と抽出時間は増加は少ない.探索時間は組合せ総数に比例するため,大規 模な不均一クラスタでは増大する.本研究における最適構成の予測は組合せ最 適化問題の一種である.本研究では探索アルゴリズムは使用せず全ての構成の 予測時間を求めているが,実験で使用した不均一クラスタにおいては探索時間 は1秒未満と小さい.そのため,探索時間の削減は今後の課題とする.

ベンチマーク	測定時間	抽出時間	抽出時間	探索時間			
		(最小二乗法)	(非負最小二乗法)				
HPL	4.2×10^3	$7.1 imes 10^{-3}$	$4.0 imes 10^{-3}$	1.5×10^{-2}			
Himeno BMT	$3.5 imes 10^1$	6.6×10^{-3}	4.4×10^{-3}	1.7×10^{-2}			
hpcmw-solver-test	2.7×10^4	$5.3 imes 10^{-3}$	3.4×10^{-3}	1.2×10^{-2}			
FFTE	$6.1 imes 10^1$	$4.7 imes 10^{-3}$	$3.6 imes 10^{-3}$	2.7×10^{-3}			

長7 予測時間

3.5.2 HPLの評価結果

HPLの評価結果を表 28,表 29,表 33 に示す.

図4はHPLの予測最適構成の実測時間と実測最適構成の実測時間を表している.図中,"optimal"は実測最適構成,"ls"は最小二乗法でモデルを構築した場合の予測最適構成,"nnls"は非負最小二乗法でモデルを構築した場合の予測最適構成を示す.lsは $N \ge 800$ で最適構成を予測できた. $400 \le N \le 600$ で誤差800%と大きくなっているが,その実行時間は1秒以下と小さいため,実用上大きな問題はない.nnlsは全てのNで最適構成が予測できた.ls,nnlsともに外挿範囲でも最適構成が予測できており精度は良い.

HPL の予測時間と実測時間の相関係数を図 5,相関係数の要素点数を表 8 に 示す. $N \le 800$ では $\tau \le 2\hat{T}$ の条件を満たす構成が4点程度と少ないため,ここ では10点以上の構成を含む $N \ge 1200$ に注目する.ls,nnlsともに $N \ge 1600$ で 0.8 を超える高い相関が得られている.外挿範囲についても高い相関が得ら れており精度は良い.

N	ls	nnls	総数
400	5	4	188
600	3	2	188
800	4	3	188
1200	12	12	188
1600	16	16	188
2400	20	25	188
3200	54	54	188
4800	46	55	188
6400	44	44	188
8000	35	35	188
9600	35	34	188

表8 HPLの相関係数の要素点数

3.5.3 Himeno BMT の評価結果

Himeno BMT の評価結果を表 39,表 40,表 44 にまとめる.

図 6 は Himeno BMT の予測最適構成の実測時間と実測最適構成の実測時間で ある.ls は内挿範囲の $112 \le N \le 192$ で誤差は 5%以下と準最適構成を予測でき たが,外挿範囲の $N \ge 224$ で誤差が 400%を超えている.nnls は $32 \le N \le 256$ で誤差は 19%以下となっており,外挿範囲でも準最適構成が予測できた.nnls は ls に比べて精度が良いと言える.

Himeno BMT の予測時間と実測時間の相関係数を図7,相関係数の要素点数 を表9に示す. $N \le 64$ では,nnls は $\tau \le 2\hat{T}$ の条件を満たす構成が5点程度と 少ないため,精密な議論は難しい.ls は内挿範囲の $128 \le N \le 160$ で 0.8 を超 える高い相関が得られているが,外挿範囲の $224 \le N \le 256$ では0を下回る低 い値となった.nnls は $N \ge 128$ で 0.7 を超える高い相関が得られており,外挿 範囲も高い値を維持している.

ls で精度が悪い原因は,予測実行時間が負の値となる構成が選択されるため である.例として,図8に最小二乗法で構築した $M_2 = 2$ のNP-Tモデルを 示す.実測値が極端に大きい点(性能グリッチ)が含まれるためにモデルが破綻 し,N = 256では予測時間が負の値となっている.非負最小二乗法で構築した $M_2 = 2$ のNP-Tモデルでは図9のようにモデルの破綻は生じておらず,負の実 行時間は予測されていない.

表9 Himeno BMTの相関係数の要素点数

N	ls	nnls	総数
32	87	3	188
48	166	7	188
64	155	5	188
80	94	11	188
96	67	23	188
112	62	57	188
128	62	57	188
160	57	57	188
192	80	71	188
224	124	79	188
256	154	71	188

通常の最小二乗法による Xeon $M_2 = 2 \, \mathbf{O} \, \text{NP-T} \, \mathbf{T} \, \mathbf{F}$ ル 図 8

図9 非負最小二乗法による Xeon $M_2 = 2 \sigma$ NP-T モデル

hpcmw-solver-testの評価結果 3.5.4

hpcmw-solver-test の評価結果を表 50,表 51,表 55 に示す.

図 10 は hpcmw-solver-test の予測最適構成の実測時間と実測最適構成の実測時間を表している.ls は $N \ge 300$ で誤差 0%と最適構成が予測されている.nnls は $N \ge 180$ で最適構成が予測されている.ls, nnls ともに外挿範囲の $480 \le N \le 600$ でも最適構成が予測されており精度はよいといえる.

hpcmw-solver-test の予測時間と実測時間の相関係数を図 11,相関係数の要素 点数を表 10 に示す.hpcmw-solver-test では $N \ge 60$ で $\tau \le 2\hat{T}$ の条件を満たす 構成は 10 点以上ある.ls は N = 120 で 0.2 以下まで低下しているが, $N \ge 240$ では 0.8 を超える高い相関を示している.nnls は N = 60 を除いて常に高い相関 を示し, $N \ge 300$ で 0.8 を超えている.ls, nnls ともに外挿範囲でも高い値を維 持している.

図10 hpcmw-solver-test の実測時間

図11 hpcmw-solver-test の相関係数

Ν	ls	nnls	総奴
60	42	14	115
120	45	36	136
180	50	43	130
240	55	50	137
300	51	39	115
360	67	66	151
420	66	66	139
480	61	61	131
510	42	42	81
540	56	65	124
570	42	42	81
600	60	60	130

表10 hpcmw-solver-test の相関係数の要素点数

3.5.5 FFTE の評価結果

FFTEの評価結果を表 61,表 62,表 66にまとめる.

図 12 は FFTE の予測最適構成の実測時間と実測最適構成の実測時間を表している.ls は内挿範囲の $2^{16} \le N \le 2^{20}$ で誤差最大 1%と準最適構成が予測できたが,外挿範囲の $2^{21} \le N \le 2^{23}$ では誤差が 80%を超えている.nnls は $2^{12} \le N \le 2^{23}$ で誤差最大 1%と準最適構成が予測できており,外挿でも精度がよい.ls で精度が悪い原因は Himeno BMT と同様,予測実行時間が負の値となる構成が選択されるためである.例として,最小二乗法で構築した $M_2 = 2$ の NP-T モデルを図 14 に示す.P = 4, $N = 2^{18}$ の点などに性能グリッチがあるため,ls では $N \log N$ の係数が負の値となっている.モデルが破綻しているため, $N = 2^{21}$ では予測時間が負の値になっている.非負最小二乗法で構築した $M_2 = 2$ の NP-T モデル (図 15) ではモデルの破綻は改善されており,予測時間は正の値となっている.

FFTE の予測時間と実測時間の相関係数を図 13,相関係数の要素点数を表 11 に示す.FFTE では $2^{12} \le N \le 2^{20}$ で $\tau \le 2\hat{T}$ の条件を満たす構成が 4 点程 度しかないため,条件を $\tau \le 3\hat{T}$ に緩和して相関係数を求めた.この条件でも $N \le 2^{15}$ では条件を満たす構成が 3 点程度しかないが, $N \le 2^{16}$ では 10 点以上 の構成が確保できている.

ls は内挿範囲の $2^{17} \le N \le 2^{20}$ で 0.8 と高い相関が得られているが,外挿範囲の $2^{21} \le N \le 2^{23}$ では 0.2 未満と大きく低下している.nnls は $N \le 2^{22}$ で 0.6 以上となっているが, $N = 2^{23}$ で相関係数が低下し, 0.1 を下回っている.図 16 は nnls の $N = 2^{23}$ の予測時間と実測時間の相関図である.一部の構成の予測時間が短く見積もられるために nnls では相関係数が低下する結果となった.しかし,予測時間最小の構成は実測時間最小となっており,最適構成が予測されていることが確認できる.

15

表11 FFTEの相関係数の要素点数

1 V	IS	nnis	総致
2^{12}	24	4	43
2^{13}	25	3	43
2^{14}	20	3	43
2^{15}	10	3	43
2^{16}	11	15	43
2^{17}	15	19	43
2^{18}	23	23	43
2^{19}	23	32	43
2^{20}	32	32	43
2^{21}	39	39	40
2^{22}	32	32	32
2^{23}	14	14	14

図 14 通常の最小二乗法による Xeon $M_2 = 2 \sigma$ NP-T モデル

図 15 非負最小二乗法による Xeon $M_2 = 2 \sigma$ NP-T モデル

図16 N = 2²³の予測時間と実測時間の相関図,非負最小二乗法

3.6 評価2

この節では高橋⁵⁾と同じ台数構成の不均一クラスタで評価を行う.HPL, Himeno BMT, hpcmw-solver-test の測定構成を表 12, FFTE の測定構成を表 13 に示す.組合せ総数は HPL, Himeno BMT, hpcmw-solver-test では 404 通り, FFTE はプロセス数に制限があるため 285 通りとなる.

この節の実験では, P について 3 点の実測値を使って実行時間予測モデルを構築する. HPL, Himeno BMT, hpcmw-solver-test は均一 PE 4 台を使用し $P_i = 2, 3, 4$ の実測値でモデルを構築する. FFTE は均一 PE 8 台を使用し $P_i = 2, 4, 8$ の実測値でモデルを構築する.

1	RIZ IIFI	G_1	G_2	G_3	組合せ総数
-	<i>P</i> _i の範囲	$0 \le P_1 \le 4$	$0 \le P_2 \le 4$	$0 \le P_3 \le 4$	404
	M_i の範囲	$0 \le M_1 \le 2$	$0 \le M_2 \le 2$	$0 \le M_3 \le 1$	

<u>表 12 HPL,Himeno BMT,hpcmw-solver-test の測定構成</u>

<u>表13_FFTEの測定構成</u>

	G_1	G_2	G_2	組合せ総数
	1~	~ 2	~ 3	
P_i の範囲	$0 \le P_1 \le 8$	$0 \le P_2 \le 8$	$0 \le P_3 \le 8$	285
M _i の範囲	$0 \le M_1 \le 2$	$0 \le M_2 \le 2$	$0 \le M_3 \le 1$	

3.6.1 HPLの評価結果

HPLの評価結果を表 72,表 73,表 77にまとめる.

図 17 は HPL の予測最適構成の実測時間と実測最適構成の実測時間を表して いる.ls は全ての N で誤差が 50%を超えており,予測に失敗している.高橋⁵⁾ の結果では,(準)最適構成が予測されていたが,本研究の実験では異なる結果 となった.lsではモデルが破綻しており,負の実行時間が予測されている.例と して,Pentium4の $M_1 = 1$ のNP-Tモデルを図19に示す.Pについての外挿範 囲であるP = 12で予測時間が負の値になっている. $M_2 = 1$, $M_3 = 1$ のNP-T モデルでも同様の傾向があるため,Pの大きい構成が最適構成として予測され ている.Pについての実測値が $P_i = 2,3,4$ の3点しかないため,パラメータ抽 出に失敗したと考えられる.一方,nnlsではモデルの破綻は生じておらず,誤 差は最大でも4%以内に抑えられている.

HPL の予測時間と実測時間の相関係数を図 18,相関係数の要素点数を表 14 に示す. $N \le 800$ では $\tau \le 2\hat{T}$ の条件を満たす構成が4点程度と少ないため,こ こでは 10点以上の構成を含む $N \ge 1200$ に注目する.ls は $N \ge 2400$ で 0.4 か ら 0.6 程度,nnls は $N \ge 2400$ で 0.5 から 0.7 程度となっている.nnls の相関係 数は ls に比べて常に高くなっている.

表14 材	相関係数の)要素点数

\overline{N}	ls	nnls	総数
400	5	4	404
600	13	2	404
800	44	4	404
1200	175	25	404
1600	251	91	404
2400	205	113	404
3200	159	96	404
4800	157	69	404
6400	177	198	404
8000	177	200	404
9600	153	156	404

図 19 最小二乗法による Pentium4 $M_1 = 1 \sigma$ NP-T モデル

3.6.2 Himeno BMTの評価結果

Himeno BMT の評価結果を表 83,表 84,表 88 に示す.

図 20 は Himeno BMT の予測最適構成の実測時間と実測最適構成の実測時間 を表している.lsでは内挿範囲のN = 112で誤差が2000%,外挿範囲の $N \ge 224$ で誤差が700%を超えており,予測に失敗している.高橋⁵⁾の結果では,誤差は 30%程度となっていたが,本研究の実験では誤差が大きくなっている.nnlsでは N ≥ 48 で最適構成が予測できており,内挿範囲,外挿範囲ともに精度がよい.

Himeno BMT の予測時間と実測時間の相関係数を図 21,相関係数の要素点数を表 15 に示す.ls は N = 192 では 0.8 を超えているがそれ以外では全体的に低く精度は悪い.nnls は $N \ge 160$ で 0.8 を超えており,外挿範囲でも高い値を維持している.

表15 相関係数の要素点数

N	ls	nnls	総数
32	172	69	404
48	213	13	404
64	206	18	404
80	158	29	404
96	104	63	404
112	155	79	404
128	121	79	404
160	99	147	404
192	141	168	404
224	121	163	404
256	130	163	404

3.6.3 hpcmw-solver-testの評価結果

hpcmw-solver-test の評価結果を表 94,表 95,表 99 にまとめる.

図 22 は hpcmw-solver-test の予測最適構成の実測時間と実測最適構成の実測時間である.ls は $N \ge 240$ で誤差が 18%以上,外挿範囲の N = 510,570 では 誤差が 40%を超えている.高橋⁵⁾の結果では,(準)最適構成の予測に成功して いたが,本研究の実験では予測に失敗した.ls では HPL と同様, P の外挿範囲

で実行時間が小さく予測されているため,誤差が大きくなっている.図24は Pentium4の $M_1 = 1$ のNP-Tモデルである.Pの外挿範囲であるP = 12では, $N \le 300$ で予測時間が負の値になっている. $M_2 = 1$, $M_3 = 1$ のNP-Tモデル でも同様に破綻が生じているため,Pの大きい構成が最適構成として予測され ている.Pについての実測値が $P_i = 2,3,4$ の3点しかないため,パラメータ抽 出に失敗したと考えられる.nnlsは $N \ge 240$ で誤差は最大で1%となっており, (準)最適構成が予測できている.

hpcmw-solver-test の予測時間と実測時間の相関係数を図 23,相関係数の要素点数を表 16 に示す.ls は $N \ge 300 \ \text{c} \ 0.5$ を超えているが 0.8 を超える点はない.nnls は $N \ge 120 \ \text{c} \ 0.8$ を超えており,ls よりも高い相関を示している.外挿範囲の $480 \le N \le 600$ でも高い値を維持しており精度はよいといえる.

<u>nw-soi</u>	ver-te	SUUDT	ロミリホす
N	ls	nnls	総数
60	75	60	198
120	110	113	243
180	100	97	240
240	83	71	251
300	60	43	198
360	104	92	285
420	68	61	256
480	70	74	246
510	34	31	142
540	68	65	235
570	32	29	140
600	70	67	238

表16 hpcmw-solver-test の相関係数の要素点数

図 24 最小二乗法による Pentium4 $M_1 = 1$ の NP-T モデル

3.6.4 FFTE の評価結果

FFTEの評価結果を表 105,表 106,表 110 に示す.

図 25 は FFTE の予測最適構成の実測時間と実測最適構成の実測時間を表している.lsでは内挿範囲,外挿範囲ともに予測に失敗しており,高橋⁵⁾の結果が再現されている.外挿範囲の $2^{21} \le N \le 2^{23}$ についてみると,ls はで誤差が 400%を超えており精度が悪いが,nnls は誤差が 12%程度と改善されている.しかし ls,nnls ともに内挿範囲で誤差が 70%を超える点があり,予測精度に問題 がある.

 $\tau \leq 3\hat{T}$ を満たす構成の相関係数を図 26,相関係数を求めるのに使用した構成の数を表 17 に示す.ls は外挿範囲の $2^{21} \leq N \leq 2^{23}$ で相関係数が急激に低下し,0.2 を下回っている.nnls は内挿範囲の $2^{16} \leq N \leq 2^{20}$ では ls よりも相関係数が小さくなっているが,外挿範囲の $2^{21} \leq N \leq 2^{23}$ では高い値となっている.

N	ls	nnls	総数
2^{12}	178	94	285
2^{13}	179	93	285
2^{14}	173	93	285
2^{15}	150	93	285
2^{16}	132	57	285
2^{17}	93	93	285
2^{18}	93	57	285
2^{19}	93	94	285
2^{20}	237	216	285
2^{21}	255	253	282
2^{22}	253	251	274
2^{23}	250	250	250

表17 相関係数の要素点数

3.7 考察

ls は,評価1のHPL, hpcmw-solver-test では(準)最適構成が予測できたが, それ以外では誤差が大きくなり,予測に失敗した.nnlsは,評価2のFFTE以 外の全てで(準)最適構成が予測できた.nnlsはlsに比べて有効であるといえる.

Himeno BMT, FFTE では性能グリッチが発生したために ls ではモデルが破 綻したが, nnls ではモデルの破綻はなかった.しかし,性能グリッチがパラメー タ抽出に影響を及ぼし,実行時間が小さく見積もられるケースがあった.性能 グリッチの原因としては,キャッシュメモリのスラッシングやメモリのバンク 衝突が考えられるが,発生条件を解明することは困難である.さらなる精度向 上には性能グリッチへのなんらかの対策が必要になるだろう.

また,lsでは評価2のHPL,hpcmw-solver-testでPが大きい場合に負の実行

時間が予測されていた.nnlsでは負の実行時間は予測されておらず,改善されたといえる.評価1ではモデル構築に必要な実測値の測定に使用する PE の台数が多いため,負の実行時間が予測されなかったと考えられる.

また,本研究では実行時間は単調増加であると考え,全てのパラメータに $k_i \ge 0$ という制限を加えたが,応用によっては適切でない場合がある.例えば, バブルソートがそれにあたる.要素数Nのソートを行うときの比較回数は式(7) となる.

 $f(N) = \frac{1}{2}N^2 - \frac{1}{2}N$ (7)

式 (7) は $N \ge 1$ で単調増加するが,負の係数を含んでいる.非負最小二乗法で $\forall k_i \ge 0$ という制限を加えることで,本来負の値となる係数が0 以上となってし まい,予測精度が悪くなる可能性が考えられる.こうした点を含めたパラメー 夕抽出法の改良が今後の課題である.

4 不均一クラスタからのモデル構築

4.1 既存手法の問題点

式 (4) は N の 3 次式であるため, 0 次の項を含め N について最低でも 4 つ, P についても同様に最低でも 3 つの実測値が必要になる.通常 N は容易に変更で きるため大きな問題ない . しかし, P の異なる実測値を得るには PE の台数を 変化させる必要があり,均一 PE 2 台以上の実測値を必要とするため,最低で も 4 台の均一 PE が必要となる.また,総プロセス数 P に制限がある場合には, それ以上の台数の均一 PE が必要となる.例えば, FFTE では P は 2 のべき乗 に制限されるため, $M_i = 1$ で P = 2,4,8 の実測値を使用する.そのため,最低 でも 8 台の均一 PE を必要とする.

4.2 提案手法

本研究では,低速な PE を含む不均一クラスタの実行時間が,同数の低速な PE で構成される均一サブクラスタの実行時間と(ほぼ)同じであると仮定する. この仮定が成立すれば,低速な PE が1台以上含まれる不均一クラスタの実測 値から低速な PE のみで構成される均一サブクラスタのモデルを構築すること ができる.

この手法では,高速な PE を利用して低速な PE のモデルを作成することが できる.利用可能な高速な PE をすべてを使うことでパラメータ抽出に用いる データ点数を増やし,モデル精度が向上することも期待できる.

しかし,不均一サブクラスタでは均一サブクラスタと通信のタイミングが異 なり,通信時間が変動するために均一サブクラスタと実行時間が同じにならな い可能性がある.この実行時間差がパラメータ抽出に影響し,予測精度が低下 することが考えられる.均一サブクラスタから構築したモデルと同様の精度が 得られるかについては,実応用を用いて評価する必要がある.

4.3 評価方法

評価環境は3章と同じく,表1の不均一クラスタを用いる.同様に表3の問題 サイズで評価を行う.Xeon およびPentium 4の Hyper Threading を使用しない 点についても同様である.評価対象には HPL, Himeno BMT, hpcmw-solvertest, FFTE を用いる.パラメータ抽出には,3章で有効性が確認された非負最

hpcmw-solver-test では N は P の倍数, FFTE では N は 2 のべき乗である必要がある

小二乗法を用いる.

この節では,3章と同じく,PE台数構成が異なる2つ環境で評価を行う.モデル構築に必要な実測値の測定構成および評価時の測定構成は4.4節と4.5節で述べる.

4.4 評価1

この節ではプロセッサ3種類,8台の不均一クラスタで評価を行う.評価は 3.5節と同様の表6に示す構成で行う.

この節の実験では低速な PE を 1 台以上含む合計 8 台の PE を使って実行時間 を測定し,実行時間予測モデルを構築する.モデル構築時の測定構成を表 18 に 示す.不均ーサブクラスタの実測値は台数構成を変えた 3 通りで測定し比較す る. G_2 , G_3 のモデルは不均ークラスタの実測値から構築するが,最も高速な G_1 のモデル構築には均一サブクラスタを使用する.

実測値の点数は3.5節と同様, HPL, Himeno BMT, hpcmw-solver-test が $P_i = 2, ..., 8 \mathbf{0} 7 \mathbf{k}$, FFTE が $P_i = 2, 4, 8 \mathbf{0} 3 \mathbf{k}$ である.

	G_1 のモデル	G_2 のモデル	G_3 のモデル
homo	Pentium 4×8	Xeon×8	$CeleronM \times 8$
hetero1	Pentium 4×8	$Xeon \times 7$, Pentium 4×1	$\rm CeleronM{\times}7$, $\rm Pentium4{\times}1$
hetero4	Pentium 4×8	$Xeon \times 4$, Pentium 4×4	$CeleronM \times 4$, Pentium 4×4
hetero7	Pentium 4×8	Xeon $\times 1$, Pentium 4×7	$CeleronM \times 1$, $Pentium4 \times 7$

<u>表18 モデル構築の測定構成</u>

4.4.1 HPLの評価結果

HPLの評価結果を表 29,表 30,表 31,表 32,表 33 にまとめる.

HPL の予測最適構成の実測時間と実測最適構成の実測時間を図 27 に示す. homo, hetero1 は全ての N で最適構成が予測された.hetero4, hetero7 は N = 3200 で誤差 8%の準最適構成,それ以外では最適構成が予測された.4つの手法とも外挿範囲でも精度がよく,同等の精度が得られている.

HPL の予測時間と実測時間の相関係数を図 28,相関係数の要素点数を表 19 に示す. $N \le 800$ では $\tau \le 2\hat{T}$ の条件を満たす構成が 3 点程度しかないため, $N \ge 1200$ に注目する.homo,hetero1,hetero4 は $N \ge 1600$ で 0.8 を超える 高い相関が得られている.hetero7 は $N \ge 4800$ で徐々に相関係数が低下し, N = 9600 では 0.6 以下となっている.表 19 を見ると,hetero7 は $N \ge 4800$ で 条件を満たす構成が他に比べて多く,予測時間が小さく見積もられる構成が多いことが確認できる.

この原因は,モデル構築に使用する hetero7 の実行時間が homo の実行時間に 比べて小さいために,予測時間を小さく見積もるモデルが抽出されたためだと 考えられる.図 29 は $M_2 = 2$ のモデル構築に使用する P = 16 のときの実行時 間である.hetero7 の実行時間は $N \ge 6400$ で homo よりも 30%以上小さくなっ ている.

N	homo	hetero1	hetero4	hetero7	総数
400	4	4	4	4	188
600	2	2	2	2	188
800	3	3	3	3	188
1200	12	12	14	15	188
1600	16	16	16	37	188
2400	25	25	31	37	188
3200	54	54	54	62	188
4800	55	55	55	107	188
6400	44	44	44	105	188
8000	35	35	44	95	188
9600	34	34	35	94	188

表19 HPLの相関係数の要素点数

4.4.2 Himeno BMTの評価結果

Himeno BMT の評価結果を表 40,表 41,表 42,表 43,表 44 に示す.

図 30 は Himeno BMT の予測最適構成の実測時間と実測最適構成の実測時間 を表している.homo,hetero1 は $96 \le N \le 256$ で誤差は最大 7%と準最適構成 が予測されている. $N \ge 112$ では最適構成が予測されており,外挿範囲でも精 度はよい.hetero4 は $96 \le N \le 256$ で誤差は最大で 28%とやや大きいが,外挿 範囲の $224 \le N \le 256$ では最適構成が予測されている.hetero7 は hetero4 と同 様に $96 \le N \le 256$ で誤差は最大で 28%だが,外挿範囲の N = 256 では誤差は 最大 23%と hetero4 と比べて大きくなっている.

Himeno BMT の予測時間と実測時間の相関係数を図 31,相関係数の要素点数 を表 20 に示す. $N \le 64$ では $\tau \le 2\hat{T}$ の条件を満たす構成が5点程度しかないが, $N \ge 80$ では 10 点以上確保できている.homo,hetero1,hetero4 は $N \ge 128$ で 0.7を超える相関が得られているが,hetero7 は $N \ge 112$ で低下している.表 20 を見ると,hetero7 は他に比べて $\tau \le 2\hat{T}$ を満たす構成が多く,実行時間が小さ く予測される構成が多いことがわかる.

原因はこれまで同様,モデル構築に使用する実測値が異なるためである.図32 は $M_2 = 2$ のモデル構築に使用するP = 16のときの実行時間である.hetero7 の実行時間は $N \ge 160$ で homoよりも70%以上小さくなっているため,実行時間を小さく見積もるモデルが抽出されたと考えられる.

表 20 Himeno BMT の相関係数の要素点数

N	homo	hetero1	hetero4	hetero7	総数
32	3	3	13	38	188
48	7	8	15	38	188
64	5	5	11	28	188
80	11	11	19	28	188
96	23	23	29	44	188
112	57	57	57	89	188
128	57	57	57	91	188
160	57	57	57	91	188
192	71	71	71	123	188
224	79	79	79	112	188
256	71	71	71	101	188

4.4.3 hpcmw-solver-test の評価結果

hpcmw-solver-testの評価結果を表 51,表 52,表 53,表 54,表 55 にまとめる.

図 34 は hpcmw-solver-test の予測最適構成の実測時間と実測最適構成の実測 時間である.4つの手法ともに $N \ge 180$ で最適構成が予測されており,外挿範 囲の $480 \le N \le 600$ でも精度がよい.

hpcmw-solver-test の予測時間と実測時間の相関係数を図 35,相関係数の要 素点数を表 21 に示す.条件を満たす構成は N ≥ 60 で 10 点以上ある.4 つの手 法ともに $N \ge 180$ で 0.8 を超える高い相関を示している . hpcmw-solver-test で は HPL や Himeno BMT とは異なり, hetero7 でも homo とほぼ同等結果が得ら れている.

₹ 21	hpcmw	-solver-t	est の相同	創糸釵の	安索点线
N	homo	hetero1	hetero4	hetero7	総数
60	14	14	18	65	115
120	36	36	47	58	136
180	43	43	61	70	130
240	50	50	61	61	137
300	39	39	50	50	115
360	66	66	75	75	151
420	66	66	66	66	139
480	61	61	61	61	131
510	42	42	42	42	81
540	65	65	65	65	124
570	42	42	42	42	81
600	60	60	60	60	130

表 数

4.4.4FFTE の評価結果

FFTEの評価結果を表 62,表 63,表 64,表 65,表 66 に示す.

図 36 は FFTE の予測最適構成の実測時間と実測最適構成の実測時間を表している.4つの手法ともに精度がよく,誤差は最大で2%程度に抑えられている. homoとheteroで同等の予測精度を示している.

FFTE の予測時間と実測時間の相関係数を図 37,相関係数の要素点数を表 22 に示す.FFTE では $\tau \leq 2\hat{T}$ の条件を満たす構成が少ないため,条件を $\tau \leq 3\hat{T}$ に緩和して相関係数を求めている.homo,hetero1 は $N = 2^{23}$ で0.1 未満まで相関係数が低下しているが,hetero4,hetero7 では0.9 を超える高い相関が得られている.HPL,Himeno BMT ではhetero7 で相関係数が低下していたが,FFTEでは逆にhomo で低下する結果となっている.

図 38 は $M_2 = 2$ のモデル構築に使用する P = 16のときの実行時間,図 39 は そのときの性能を表している.4つの手法とも $N = 2^{19}$ で性能グリッチが発生 しており,実行時間が大きくなっている.homo,hetero1は $N = 2^{20}$ で性能が 良くなっているため, $N = 2^{19}$ から $N = 2^{20}$ にかけて実行時間が減少している. 内挿範囲のNの大きい点でこのような実測値となったため,homo,hetero1で はパラメータ抽出に失敗しhetero4,hetero7に比べて精度が悪くなったと考え られる.

て	衣22 FFIEの相関係数の安条点数						
N	homo	hetero1	hetero4	hetero7	総数		
2^{12}	4	4	4	5	43		
2^{13}	3	3	3	4	43		
2^{14}	3	3	3	4	43		
2^{15}	3	16	3	4	43		
2^{16}	15	15	15	15	43		
2^{17}	19	19	19	19	43		
2^{18}	23	23	23	23	43		
2^{19}	32	23	23	32	43		
2^{20}	32	32	32	32	43		
2^{21}	39	39	39	39	40		
2^{22}	32	32	32	32	32		
2^{23}	14	14	14	14	14		

4.5 評価2

この節では 3.6 節と同様,高橋⁵⁾と同じ台数構成の不均一クラスタで評価を 行う.HPL, Himeno BMT, hpcmw-solver-testの測定構成を表 12, FFTEの測 定構成を表 13 に示す.組合せ総数は HPL, Himeno BMT, hpcmw-solver-test では 404 通り, FFTE はプロセス数に制限があるため 285 通りとなる.

この節の実験では 3.6 節と同様, P について 3 点の実測値を使って実行時間予 測モデルを構築する.HPL, Himeno BMT, hpcmw-solver-test は低速な PE を 1 台以上含む合計 4 台の PE を使用し $P_i = 2, 3, 4$ の実測値でモデルを構築する. FFTE は低速な PE を 1 台以上含む合計 8 台の PE を使用し $P_i = 2, 4, 8$ の実測 値でモデルを構築する.

不均一サブクラスタの実測値は台数構成を変えた3通りで測定し比較する.

HPL, HimenoBMT, hpcmw-solver-testのモデル構築に必要な実測値の測定は表 23の構成で行う.FFTEの測定構成は 3.6節と同様,表 18の構成である.

	G_1 のモデル	G_2 のモデル	G ₃ のモデル		
homo	Pentium 4×4	$Xeon \times 4$	$CeleronM \times 4$		
hetero1	Pentium 4×4	$Xeon \times 3$, Pentium 4×1	${ m CeleronM}{ imes}3$, ${ m Pentium}4{ imes}1$		
hetero2	Pentium 4×4	Xeon $\times 2$, Pentium 4×2	${\rm CeleronM}{\times}2$, ${\rm Pentium}4{\times}2$		
hetero3	Pentium 4×4	Xeon $\times 1$, Pentium 4×3	$CeleronM \times 1$, $Pentium4 \times 3$		

表23 HPL, HimenoBMT, hpcmw-solver-testのモデル構築の測定構成

4.5.1 HPLの評価結果

HPLの評価結果を表 73,表 74,表 75,表 76,表 77 に示す.

図 40 は HPL の予測最適構成の実測時間と実測最適構成の実測時間を表して いる.4つの手法とも全ての N で (準) 最適構成の予測に成功している.誤差は 最大でも4%以内に抑えられており精度はよい.homoと hetero で同程度の精度 が得られている.

HPL の予測時間と実測時間の相関係数を図 41,相関係数の要素点数を表 24 に示す. $N \le 800$ では $\tau \le 2\hat{T}$ の条件を満たす構成が4点程度しかないため, $N \ge 1200$ に注目する.4つの手法とも $N \ge 3200$ で相関係数が0.5を超えてお り,極端な精度低下はみられない.

N	homo	hetero1	hetero2	hetero3	総数
400	4	6	4	4	404
600	2	2	2	2	404
800	4	4	4	4	404
1200	25	25	75	22	404
1600	91	127	128	121	404
2400	113	127	137	115	404
3200	96	112	117	104	404
4800	69	94	101	88	404
6400	198	222	222	177	404
8000	200	200	224	208	404
9600	156	198	215	241	404

表 24 相関係数の要素点数

4.5.2 Himeno BMT の評価結果

Himeno BMT の評価結果を表 84,表 85,表 86,表 87,表 88 にまとめる.
図 42 は Himeno BMT の予測最適構成の実測時間と実測最適構成の実測時間である.homo,hetero1,hetero2 は N ≥ 64 で最適構成が予測できている.
hetero3 では N = 128 で誤差が 80%を超え,予測に失敗している.

Himeno BMT の予測時間と実測時間の相関係数を図 43,相関係数の要素点数を表 25 に示す.homo,hetero1,hetero2 は $N \ge 160$ で 0.8 を超えており精度がよい.hetero3 は $N \ge 112$ で 0.6 未満と精度が悪い.表 25 を見ると hetero3 は他に比べて $\tau \le 2T_{opt}$ の条件を満たす構成が多く,実行時間を小さく見積もる場合が多いことが確認できる.

N	homo	hetero1	hetero2	hetero3	総数
32	69	69	85	186	404
48	13	13	47	139	404
64	18	15	42	105	404
80	29	43	59	106	404
96	63	59	79	106	404
112	79	79	79	115	404
128	79	79	79	106	404
160	147	143	147	196	404
192	168	168	168	221	404
224	163	163	163	222	404
256	163	163	163	209	404

表 25 相関係数の要素点数

4.5.3 hpcmw-solver-test の評価結果

hpcmw-solver-test の評価結果を表 95,表 96,表 97,表 98,表 99 に示す.
 図 44 は hpcmw-solver-test の予測最適構成の実測時間と実測最適構成の実測
 時間を表している.4つの手法すべてにおいて N ≥ 240 で誤差が1%未満となっており,非常に精度がよい.

hpcmw-solver-test の予測時間と実測時間の相関係数を図 45,相関係数の要素点数を表 26 に示す.4つの手法ともに $N \ge 120$ で相関係数が 0.8 を超えており, homo と hetero で同等の精度を示している.

図 44 hpcmw-solver-test の実測時間

図 45 hpcmw-solver-test の相関係数

N	homo	hetero1	hetero4	hetero7	総数
60	60	60	60	61	198
120	113	120	112	139	243
180	97	97	87	97	240
240	71	64	64	78	251
300	43	43	36	43	198
360	92	92	92	92	285
420	61	61	61	61	256
480	74	74	74	74	246
510	31	31	31	31	142
540	65	65	65	65	235
570	29	29	29	29	140
600	67	67	67	67	238

表 26 hpcmw-solver-test の相関係数の要素点数

4.5.4 FFTE の評価結果

FFTEの評価結果を表 106,表 107,表 108,表 109,表 110 にまとめる.

FFTE の予測最適構成の実測時間と実測最適構成の実測時間を図 46 に示す. 4 つの手法ともに内挿範囲で誤差が 70%を超える点があり予測精度に問題がある.しかし,全ての N で予測した構成は同じであり,homoと hetero で同程度の精度が得られている.

FFTE の予測時間と実測時間の相関係数を図 47,相関係数の要素点数を表 27 に示す.FFTE では $N \ge 2^{12}$ で $\tau \le 3T_{opt}$ を満たす構成は 10 点以上存在する. $N = 2^{16} \ge N = 2^{19}$ で homo の相関係数が低下している点を除き,全ての手法 ともにほぼ同じ相関係数が得られている.

N	homo	hetero1	hetero4	hetero7	総数
2^{12}	94	94	94	98	285
2^{13}	93	93	93	97	285
2^{14}	93	93	93	97	285
2^{15}	93	93	93	93	285
2^{16}	57	93	93	93	285
2^{17}	93	93	93	93	285
2^{18}	57	57	57	93	285
2^{19}	94	93	93	93	285
2^{20}	216	216	151	139	285
2^{21}	253	231	231	154	282
2^{22}	251	251	229	152	274
2^{23}	250	250	228	147	250

表 27 相関係数の要素占数

4.6 考察

最適構成の予測精度については,評価1のHPL,hpcmw-solver-test,FFTE, 評価2のHPL,hpcmw-solver-testでは4つの方法全てで(準)最適構成が予測で きた.評価2のFFTEでは誤差が大きくなる場合があったがhomoとheteroで 同一の構成が予測された.HPL,hpcmw-solver-test,FFTEにおいてはhomo とheteroは同等の予測精度を持つといえるだろう.Himeno BMTは,評価1の hetero4とhetero7,評価2のhetero3で誤差が大きくなる結果となった.この原 因は高速 PEを多く含む構成の実行時間と均一 PEの実行時間に差が生じたこ とにある.高速な PEを含む場合では通信タイミングが変わり通信時間が変化 することが考えられる.この結果,抽出されるモデルに差が生じ,予測精度が 低下したと推測される.

実行時間の予測精度については,hpcmw-solver-test では,4つの方法すべて で同等の予測精度を示した.評価1のHPLとHimeno BMT,評価2のHimeno BMTではhetero7で実行時間が小さく予測されるケースが多く,相関係数が低 下した.HPLとHimeno BMTでは高速なPEを多く含む場合に実測値が小さ くなり,予測精度が悪くなったと考えられる.通信時間がほとんどないhpcmwsolver-testでは,homoとheteroで実行時間がほぼ同一となったため,同等の精 度をもつモデルが構築できたと推測される.

5 おわりに

本研究では,非負最小二乗法を用いることでモデルの破綻を抑制し,予測精度の向上を試みた.従来手法では予測に失敗していた Himeno BMT についても(準)最適構成の予測に成功し,有効性が確認できた.ただし,FFTE は PE 台数の多い構成(3種類,24台)では,精度の改善は見られたが(準)最適構成の予測には失敗した.さらなる精度向上が今後の課題である.

本研究では,不均一クラスタからモデル構築する手法を提案し,均一クラス タからモデルを構築した場合と同等の精度が得られることを示した.この手法 は不均一クラスタにおける性能のボトルネックを利用するため,最も高速なPE に対しては適用できない.高速なPEのモデルの構築が今後の課題である.

NP-T モデルは均一なネットワークを仮定しているため,本研究では全ての PEが1台のスイッチに接続され,NICが1000BASE-Tに統一されている均一 なネットワーク環境下で評価を行った.しかし,PEの台数が大きくなると1台 のスイッチに全てのPEを接続することは困難であるため,スイッチが多段に なる場合などの通信不均一な環境を考慮する必要がある.本研究ではモデル自 体の変更は行わず,構築方法を変えることで不均一クラスタからのモデル構築 と予測精度の向上を図ったが,通信をモデル化するにはこのような方法だけで は対応は難しい.通信を考慮した新たなモデル構築が今後の課題である.

謝辞

修士論文をまとめるにあたり,お世話になった方々に感謝いたします.岸本 芳典先輩は,不均一クラスタの実行時間予測モデルを考案し,本研究につなが る一連の基礎を築いてくださいました.高橋翔先輩は,岸本先輩の研究を引き 継いで優れた結果を残すとともに,クラスタに関する多くの事を教えてくださ いました.また,秋中昌訓君をはじめ,研究室の皆様にはご迷惑をかけること もありました.心から深く感謝いたします.最後に,2年間に渡り,いろいろと 多くのことを指導してくださった市川周一助教授に深く感謝いたします.

参考文献

- Kishimoto, Y. and Ichikawa S.: Optimizing the Configuration of a Heterogeneous Cluster with Multiprocessing and Execution-Time Estimation, Parallel Computing, Vol.31, No.7, pp.691–710 (2005).
- 2) 岸本芳典,市川周一: 不均一クラスタ上での実行時間予測モデルとその改
 良,情報処理学会研究報告 2004-HPC-97, pp.73-78 (2004).
- 3) 岸本芳典: 不均一クラスタ上での実行時間予測モデルとその評価,豊橋技術科学大学知識情報工学専攻修士論文 (2004).
- 4) 高橋翔,市川周一: 不均一クラスタの最適構成予測モデルの各応用への適 用と評価,情報処理学会研究報告 2006-HPC-105, pp.97-102 (2006).
- 5) 高橋翔: 不均一クラスタにおける最適構成予測手法の適用と評価,豊橋技術科学大学知識情報工学専攻修士論文 (2006).
- 6) 笹生健,松岡聡,建部修見: ヘテロなクラスタ環境における並列LINPACK
 の最適化,情報処理学会研究報告 2001-HPC-86, pp.49-54 (2001).
- 7) Petitet, A., Whaley, R. C., Dongarra, J. and Cleary, A.: HPL A Portable Implementation of the High-Performance Linpack Benchmark for Ddistributed-Memory Computers, http://www.netlib.org/benchmark/ hpl/.
- 8) 姫野龍太郎: Himeno BMT, http://accc.riken.jp/HPC/HimenoBMT/.
- 9) 高度情報科学技術研究機構 (RIST): HPC-MW 検証ツール hpcmw-solvertest, http://hpcmw.tokyo.rist.or.jp/.
- 10) Takahashi, D.: FFTE: A Fast Fourier Transform Package, http:// www.ffte.jp/.
- 11) Gropp, W., et al: MPICH, http://www-unix.mcs.anl.gov/mpi/mpich1/.
- 12) Lawson, C. L. and Hanson, R. J.: Solving Least Squares Problems (Prentice-Hall Series in Automatic Computation), Prentice Hall (1974).
- 13) Free Software Foundation: GSL GNU scientific library, http:// www.gnu.org/software/gsl/.

付録

A.1 評価1の測定データ

	予測最良構成			実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	0,0,2,2,0,0	-0.43	0.27	1,1,0,0,0,0	0.03	-15.218	8.000
600	0,0,2,2,0,0	-0.10	0.59	1,1,0,0,0,0	0.05	-3.074	10.800
800	1,1,0,0,0,0	0.12	0.12	1,1,0,0,0,0	0.12	-0.007	0.000
1200	1,1,0,0,0,0	0.38	0.35	1, 1, 0, 0, 0, 0	0.35	0.082	0.000
1600	1,1,0,0,0,0	0.83	0.78	$1,\!1,\!0,\!0,\!0,\!0$	0.78	0.064	0.000
2400	2,1,0,0,0,0	2.12	2.06	2,1,0,0,0,0	2.06	0.027	0.000
3200	2,1,0,0,0,0	4.23	4.17	2,1,0,0,0,0	4.17	0.014	0.000
4800	2,1,4,1,0,0	11.04	10.68	2,1,4,1,0,0	10.68	0.033	0.000
6400	2,1,4,1,0,0	21.20	20.51	2,1,4,1,0,0	20.51	0.034	0.000
8000	2,1,4,1,0,0	35.86	34.78	2,1,4,1,0,0	34.78	0.031	0.000
9600	2,1,4,1,0,0	55.77	54.20	$2,\!1,\!4,\!1,\!0,\!0$	54.20	0.029	0.000

表28 HPLの予測結果, homo, ls

<u>表 29 HPL の予測結果, homo, nnls</u>

	予測最良構成			実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	1,1,0,0,0,0	0.02	0.03	1,1,0,0,0,0	0.03	-0.195	0.000
600	$1,\!1,\!0,\!0,\!0,\!0$	0.06	0.05	$1,\!1,\!0,\!0,\!0,\!0$	0.05	0.294	0.000
800	$1,\!1,\!0,\!0,\!0,\!0$	0.13	0.12	$1,\!1,\!0,\!0,\!0,\!0$	0.12	0.111	0.000
1200	$1,\!1,\!0,\!0,\!0,\!0$	0.38	0.35	$1,\!1,\!0,\!0,\!0,\!0$	0.35	0.093	0.000
1600	$1,\!1,\!0,\!0,\!0,\!0$	0.83	0.78	$1,\!1,\!0,\!0,\!0,\!0$	0.78	0.060	0.000
2400	$2,\!1,\!0,\!0,\!0,\!0$	2.33	2.06	$2,\!1,\!0,\!0,\!0,\!0$	2.06	0.130	0.000
3200	$2,\!1,\!0,\!0,\!0,\!0$	4.57	4.17	$2,\!1,\!0,\!0,\!0,\!0$	4.17	0.096	0.000
4800	$2,\!1,\!4,\!1,\!0,\!0$	11.01	10.68	$2,\!1,\!4,\!1,\!0,\!0$	10.68	0.031	0.000
6400	$2,\!1,\!4,\!1,\!0,\!0$	21.11	20.51	$2,\!1,\!4,\!1,\!0,\!0$	20.51	0.029	0.000
8000	$2,\!1,\!4,\!1,\!0,\!0$	35.54	34.78	$2,\!1,\!4,\!1,\!0,\!0$	34.78	0.022	0.000
9600	2,1,4,1,0,0	54.94	54.20	2,1,4,1,0,0	54.20	0.014	0.000

	予測最良構		実測最良構成				
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	1,1,0,0,0,0	0.02	0.03	1,1,0,0,0,0	0.03	-0.195	0.000
600	1,1,0,0,0,0	0.06	0.05	1,1,0,0,0,0	0.05	0.294	0.000
800	1, 1, 0, 0, 0, 0	0.13	0.12	1,1,0,0,0,0	0.12	0.111	0.000
1200	1,1,0,0,0,0	0.38	0.35	1,1,0,0,0,0	0.35	0.093	0.000
1600	1,1,0,0,0,0	0.83	0.78	1,1,0,0,0,0	0.78	0.060	0.000
2400	2,1,0,0,0,0	2.33	2.06	2,1,0,0,0,0	2.06	0.130	0.000
3200	2,1,0,0,0,0	4.57	4.17	2,1,0,0,0,0	4.17	0.096	0.000
4800	2,1,4,1,0,0	11.00	10.68	2,1,4,1,0,0	10.68	0.030	0.000
6400	2,1,4,1,0,0	21.10	20.51	2,1,4,1,0,0	20.51	0.029	0.000
8000	2,1,4,1,0,0	35.52	34.78	2,1,4,1,0,0	34.78	0.021	0.000
9600	2,1,4,1,0,0	54.91	54.20	2,1,4,1,0,0	54.20	0.013	0.000

表 30 HPL の予測結果, hetero1, nnls

<u>表31 HPLの予測結果, hetero4, nnls</u>

	予測最良構成			実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	1,1,0,0,0,0	0.02	0.03	1,1,0,0,0,0	0.03	-0.195	0.000
600	1, 1, 0, 0, 0, 0	0.06	0.05	1, 1, 0, 0, 0, 0	0.05	0.294	0.000
800	1,1,0,0,0,0	0.13	0.12	1,1,0,0,0,0	0.12	0.111	0.000
1200	1, 1, 0, 0, 0, 0	0.38	0.35	1, 1, 0, 0, 0, 0	0.35	0.093	0.000
1600	1,1,0,0,0,0	0.83	0.78	1, 1, 0, 0, 0, 0	0.78	0.060	0.000
2400	2,1,0,0,0,0	2.33	2.06	$2,\!1,\!0,\!0,\!0,\!0$	2.06	0.130	0.000
3200	2,1,4,1,0,0	4.52	4.51	2,1,0,0,0,0	4.17	0.084	0.082
4800	2,1,4,1,0,0	10.89	10.68	2,1,4,1,0,0	10.68	0.020	0.000
6400	2,1,4,1,0,0	20.91	20.51	2,1,4,1,0,0	20.51	0.019	0.000
8000	2,1,4,1,0,0	35.21	34.78	2,1,4,1,0,0	34.78	0.012	0.000
9600	2,1,4,1,0,0	54.45	54.20	2,1,4,1,0,0	54.20	0.005	0.000

表 32 HPL の予測結果, hetero7, nnls

	予測最良構	睛成	-	実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	1,1,0,0,0,0	0.02	0.03	1,1,0,0,0,0	0.03	-0.195	0.000
600	$1,\!1,\!0,\!0,\!0,\!0$	0.06	0.05	1,1,0,0,0,0	0.05	0.294	0.000
800	1, 1, 0, 0, 0, 0	0.13	0.12	1,1,0,0,0,0	0.12	0.111	0.000
1200	$1,\!1,\!0,\!0,\!0,\!0$	0.38	0.35	$1,\!1,\!0,\!0,\!0,\!0$	0.35	0.093	0.000
1600	$1,\!1,\!0,\!0,\!0,\!0$	0.83	0.78	$1,\!1,\!0,\!0,\!0,\!0$	0.78	0.060	0.000
2400	$2,\!1,\!0,\!0,\!0,\!0$	2.33	2.06	2,1,0,0,0,0	2.06	0.130	0.000
3200	$2,\!1,\!4,\!1,\!0,\!0$	4.17	4.51	$2,\!1,\!0,\!0,\!0,\!0$	4.17	-0.001	0.082
4800	2,1,4,1,0,0	10.02	10.68	2,1,4,1,0,0	10.68	-0.062	0.000
6400	$2,\!1,\!4,\!1,\!0,\!0$	19.40	20.51	2,1,4,1,0,0	20.51	-0.054	0.000
8000	2,1,4,1,0,0	33.04	34.78	2,1,4,1,0,0	34.78	-0.050	0.000
9600	2,1,4,1,0,0	51.69	54.20	2,1,4,1,0,0	54.20	-0.046	0.000

		1200 11			
N	homo ls	homo nnls	hetero1 nnls	hetero4 nnls	hetero7 nnls
400	-0.954603955	0.948683298	0.948683298	0.948683298	0.948683298
600	-0.969922505	1.000000000	1.000000000	1.000000000	1.000000000
800	0.983488486	1.000000000	1.000000000	1.000000000	1.000000000
1200	0.726859524	0.679269743	0.679269743	0.665902075	0.799921855
1600	0.957364627	0.857642417	0.843074316	0.836562707	0.927645268
2400	0.971793637	0.966774858	0.967779698	0.967970586	0.908344503
3200	0.896738334	0.902115243	0.904584990	0.909428075	0.876180104
4800	0.901841739	0.920087572	0.918879749	0.913735626	0.797930876
6400	0.944375854	0.946894637	0.944687834	0.929815281	0.690407733
8000	0.967846436	0.972001192	0.970132726	0.955285831	0.595807054
9600	0.976480306	0.981617790	0.980890888	0.975939687	0.578670207

表 33 HPLの相関係数

表34_HPLのNP-Tモデルの係数,homo,ls

	k_0	k_1	k_2	k_3	k_4
$M_1 = 1$	1.536527e-010	-1.658552e-007	-5.053040e-004	2.663958e-001	-1.596668e-009
$M_1 = 2$	1.622985e-010	-3.381667e-007	4.164494e-003	-5.772236e+000	-1.572979e-008
$M_1 = 3$	3.908584e-010	-8.725211e-007	3.666870e-003	-3.543736e+000	-3.460503e-009
$M_2 = 1$	1.821177e-010	-2.039577e-007	-2.158758e-004	4.592051e-002	-6.173489e-009
$M_2 = 2$	3.213582e-010	1.078112e-005	3.191831e-002	-4.017809e+001	7.989096e-008
$M_3 = 1$	5.285442e-010	-2.072279e-008	-1.005148e-003	2.314822e-001	-4.720571e-009
	k_5	k_6	k_7	k_8	k_9
$M_1 = 1$	8.704807e-006	1.120318e-002	2.090149e-007	3.710705e-004	-1.359169e-001
$M_1 = 2$	2.195233e-004	-1.491580e-001	7.673278e-007	-1.897006e-003	2.089296e + 000
$M_1 = 3$	1.722585e-004	-8.431085e-002	9.492803e-007	-1.205714e-003	1.052508e + 000
$M_2 = 1$	1.708620e-005	2.669397e-002	3.673898e-007	8.926654e-005	-6.301477e-002
$M_2 = 2$	5.972591e-004	-5.885443e-001	-6.498036e-007	-1.118051e-002	1.191338e+001

 k_4 k_1 k_3 k_0 k_2 $M_1 = 1$ 1.250490e-010 0.000000e + 0000.000000e + 0000.000000e + 0000.000000e + 000 $M_1 = 2$ 2.067964 e-0100.000000e+000 $0.000000\mathrm{e}{+000}$ 0.000000e + 0004.157568e-009 $M_1 = 3$ 3.589336e-0100.000000e + 0000.000000e+0000.000000e+0009.756250e-009 $M_2 = 1$ 1.843570e-009 1.577373e-010 0.000000e+0000.000000e + 0000.000000e+000 $M_2 = 2$ 6.702845 e-0105.063502e-0060.000000e + 0000.000000e+0004.119109e-008 $M_{3} = 1$ 5.141148e-0100.000000e + 0000.000000e + 0000.000000e+0006.939312e-010 k_5 k_6 k_7 k_8 k_9 $M_1 = 1$ 2.560516e-0052.273471e-0070.000000e + 0000.000000e + 000 $1.501254 \mathrm{e}{-}002$ $M_1 = 2$ 8.386126e-0050.000000e + 0004.858646e-0070.000000e + 0000.000000e + 000 $M_1 = 3$ 8.759763e-005 0.000000e + 0000.000000e + 0007.425513e-0070.000000e + 000 $M_2 = 1$ 3.404290e-006 2.942629e-0023.286478e-007 0.000000e + 0000.000000e + 000 $M_2 = 2$ 0.000000e + 0000.000000e + 0003.489863e-0020.000000e+0000.000000e + 0003.681901e-0053.876956e-007 $M_3 = 1$ 1.766291e-002 $0.000000e{+}000$ 0.000000e + 000

<u>表35 HPLのNP-Tモデルの係数,homo,nnls</u>

	k_0	k_1	k_2	k_3	k_4
$M_2 = 1$	1.572027e-010	0.000000e+000	0.000000e+000	0.000000e+000	1.648738e-009
$M_2 = 2$	6.639644e-010	5.220263e-006	0.000000e+000	0.000000e+000	3.714312e-008
$M_3 = 1$	5.104175e-010	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
	k_5	k_6	k_7	k_8	k_9
$M_2 = 1$	k ₅ 2.535038e-006	k_6 2.986825e-002	k ₇ 3.308793e-007	k_8 0.000000e+000	k_9 0.000000e+000
$M_2 = 1$ $M_2 = 2$	$\frac{k_5}{2.535038\text{e-}006}$ 3.913955 $\text{e-}006$	$\frac{k_6}{2.986825\text{e-}002}$ 3.669667e-002	$\frac{k_7}{3.308793\text{e-}007}$ 0.000000e+000	$\frac{k_8}{0.000000e+000}$ 0.000000e+000	$\frac{k_9}{0.000000e+000}$ 0.000000e+000

表36 HPLのNP-Tモデルの係数, hetero1, nnls

表37 HPLのNP-Tモデルの係数,hetero4,nnls

	k_0	k_1	k_2	k_3	k_4
$M_2 = 1$	1.569139e-010	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	7.472628e-010	5.101111e-006	0.000000e+000	0.000000e+000	1.571073e-008
$M_3 = 1$	5.217079e-010	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
	k_5	k_6	k_7	k_8	k_9
$M_2 = 1$	k_5 4.017105e-006	k ₆ 2.523350e-002	k_7 3.356007e-007	k_8 0.000000e+000	k_9 0.000000e+000
$M_2 = 1$ $M_2 = 2$	$\frac{k_5}{4.017105\text{e-}006}$ 5.357679e-005	$\frac{k_6}{2.523350\text{e-}002}$ 8.047608e-003	$\frac{k_7}{3.356007\text{e-}007}$ 0.000000e+000	$\frac{k_8}{0.000000e+000}$ 0.000000e+000	$\frac{k_9}{0.000000e+000}$ 0.000000e+000

表38 HPLのNP-Tモデルの係数, hetero7, nnls

	k_0	k_1	k_2	k_3	k_4
$M_2 = 1$	1.801291e-010	0.000000e+000	0.000000e+000	0.000000e+000	2.049184e-009
$M_2 = 2$	2.094969e-010	0.000000e+000	0.000000e+000	0.000000e+000	7.365332e-009
$M_3 = 1$	5.364419e-010	0.000000e+000	0.000000e+000	0.000000e+000	2.178140e-009
	k_5	k_6	k_7	k_8	k_9
$M_2 = 1$	k_5 2.328516e-005	k_6 1.738853e-002	k_7 2.447079e-007	k_8 0.000000e+000	k_9 0.000000e+000
$M_2 = 1$ $M_2 = 2$	$\frac{k_5}{2.328516\text{e-}005}$ 3.599043e-005	$\frac{k_6}{1.738853e-002}$ $1.683768e-002$	$\frac{k_7}{2.447079\text{e-}007}$ 6.155140e-007	$\frac{k_8}{0.000000e+000}$ 0.000000e+000	$\frac{k_9}{0.000000e+000}$ 0.000000e+000

表 39 Himeno BMT の予測結果, homo, ls

	予測	最良構成		実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	1,3,0,0,0,0	-6.12e-003	1.08e-003	2,1,0,0,0,0	6.14e-004	-10.965	0.750
48	0,0,2,2,0,0	-7.02e-002	4.84e-003	$2,\!2,\!4,\!1,\!2,\!1$	1.74e-003	-41.332	1.781
64	0,0,2,2,0,0	-1.70e-001	1.30e-002	$2,\!2,\!4,\!1,\!2,\!1$	3.49e-003	-49.675	2.732
80	$0,\!0,\!2,\!2,\!0,\!0$	-1.29e-001	2.48e-002	$2,\!2,\!4,\!1,\!2,\!1$	6.70e-003	-20.239	2.707
96	0,0,2,2,0,0	8.72e-003	5.09e-002	$2,\!1,\!4,\!1,\!2,\!1$	1.31e-002	-0.333	2.894
112	2,1,0,0,0,0	2.16e-002	2.17e-002	$2,\!1,\!0,\!0,\!0,\!0$	2.17e-002	-0.003	0.000
128	2,1,0,0,0,0	3.22e-002	3.24e-002	$2,\!1,\!0,\!0,\!0,\!0$	3.24e-002	-0.006	0.000
160	2,1,0,0,0,0	6.26e-002	6.14e-002	$2,\!1,\!0,\!0,\!0,\!0$	6.14e-002	0.019	0.000
192	2,1,0,0,0,0	1.08e-001	1.07e-001	$2,\!1,\!4,\!1,\!2,\!1$	1.02e-001	0.052	0.046
224	$0,\!0,\!2,\!2,\!0,\!0$	-6.88e-001	8.28e-001	$2,\!1,\!4,\!1,\!2,\!1$	1.51e-001	-5.571	4.497
256	0,0,2,2,0,0	-2.97e+000	1.28e + 000	$2,\!2,\!4,\!1,\!2,\!1$	1.99e-001	-15.906	5.414

	予測最	最構成		実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	2,1,0,0,0,0	8.68e-004	6.14e-004	2,1,0,0,0,0	6.14e-004	0.414	0.000
48	2,1,0,0,0,0	2.44e-003	1.79e-003	2,2,4,1,2,1	1.74e-003	0.399	0.031
64	2,1,0,0,0,0	5.18e-003	4.14e-003	2,2,4,1,2,1	3.49e-003	0.486	0.187
80	2,1,0,0,0,0	9.44e-003	7.78e-003	2,2,4,1,2,1	6.70e-003	0.409	0.162
96	2,1,0,0,0,0	1.55e-002	1.40e-002	2,1,4,1,2,1	1.31e-002	0.186	0.070
112	2,1,0,0,0,0	2.37e-002	2.17e-002	2,1,0,0,0,0	2.17e-002	0.095	0.000
128	2,1,0,0,0,0	3.44e-002	3.24e-002	2,1,0,0,0,0	3.24e-002	0.063	0.000
160	2,1,0,0,0,0	6.45e-002	6.14e-002	2,1,0,0,0,0	6.14e-002	0.049	0.000
192	2, 1, 4, 1, 2, 1	1.06e-001	1.02e-001	2,1,4,1,2,1	1.02e-001	0.039	0.000
224	2,1,4,1,2,1	1.61e-001	1.51e-001	2,1,4,1,2,1	1.51e-001	0.068	0.000
256	2,2,4,1,2,1	2.21e-001	1.99e-001	2,2,4,1,2,1	1.99e-001	0.109	0.000

表 40 Himeno BMT の予測結果, homo, nnls

表 41 Himeno BMT の予測結果, hetero1, nnls

	予測最	長構成		実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	2,1,0,0,0,0	8.68e-004	6.14e-004	2,1,0,0,0,0	6.14e-004	0.414	0.000
48	2,1,0,0,0,0	2.44e-003	1.79e-003	$2,\!2,\!4,\!1,\!2,\!1$	1.74e-003	0.399	0.031
64	2,1,0,0,0,0	5.18e-003	4.14e-003	2,2,4,1,2,1	3.49e-003	0.486	0.187
80	2,1,0,0,0,0	9.44e-003	7.78e-003	2,2,4,1,2,1	6.70e-003	0.409	0.162
96	2,1,0,0,0,0	1.55e-002	1.40e-002	2,1,4,1,2,1	1.31e-002	0.186	0.070
112	2,1,0,0,0,0	2.37e-002	2.17e-002	2,1,0,0,0,0	2.17e-002	0.095	0.000
128	2,1,0,0,0,0	3.44e-002	3.24e-002	2,1,0,0,0,0	3.24e-002	0.063	0.000
160	2,1,0,0,0,0	6.45e-002	6.14e-002	2,1,0,0,0,0	6.14e-002	0.049	0.000
192	2,1,4,1,2,1	1.06e-001	1.02e-001	2,1,4,1,2,1	1.02e-001	0.038	0.000
224	2,1,4,1,2,1	1.61e-001	1.51e-001	2,1,4,1,2,1	1.51e-001	0.067	0.000
256	2,2,4,1,2,1	2.21e-001	1.99e-001	2,2,4,1,2,1	1.99e-001	0.109	0.000

表 42 Himeno BMT の予測結果, hetero4, nnls

	予測最	長構成		実測最良構成			
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	2,1,0,0,0,0	8.68e-004	6.14e-004	2,1,0,0,0,0	6.14e-004	0.414	0.000
48	2,1,0,0,0,0	2.44e-003	1.79e-003	2,2,4,1,2,1	1.74e-003	0.399	0.031
64	2,1,0,0,0,0	5.18e-003	4.14e-003	2,2,4,1,2,1	3.49e-003	0.486	0.187
80	2,1,0,0,0,0	9.44e-003	7.78e-003	2,2,4,1,2,1	6.70e-003	0.409	0.162
96	2,1,0,0,0,0	1.55e-002	1.40e-002	2,1,4,1,2,1	1.31e-002	0.186	0.070
112	2,1,0,0,0,0	2.37e-002	2.17e-002	2,1,0,0,0,0	2.17e-002	0.095	0.000
128	2, 1, 4, 1, 2, 1	3.39e-002	4.15e-002	2,1,0,0,0,0	3.24e-002	0.048	0.283
160	2, 1, 4, 1, 2, 1	6.16e-002	7.17e-002	2,1,0,0,0,0	6.14e-002	0.002	0.167
192	2, 1, 4, 1, 2, 1	1.01e-001	1.02e-001	2,1,4,1,2,1	1.02e-001	-0.014	0.000
224	2,1,4,1,2,1	1.54e-001	1.51e-001	2,1,4,1,2,1	1.51e-001	0.024	0.000
256	2,2,4,1,2,1	2.21e-001	1.99e-001	2,2,4,1,2,1	1.99e-001	0.109	0.000

	予測量	最構成		実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	2,1,4,1,2,1	5.48e-004	8.72e-004	2,1,0,0,0,0	6.14e-004	-0.108	0.419
48	2, 1, 4, 1, 2, 1	1.46e-003	2.01e-003	$2,\!2,\!4,\!1,\!2,\!1$	1.74e-003	-0.162	0.153
64	2,1,4,1,2,1	3.28e-003	3.98e-003	$2,\!2,\!4,\!1,\!2,\!1$	3.49e-003	-0.058	0.140
80	2, 1, 4, 1, 2, 1	6.21e-003	8.14e-003	$2,\!2,\!4,\!1,\!2,\!1$	6.70e-003	-0.073	0.215
96	2, 1, 4, 1, 2, 1	1.05e-002	1.31e-002	$2,\!1,\!4,\!1,\!2,\!1$	1.31e-002	-0.197	0.000
112	2,1,4,1,2,1	1.64e-002	2.29e-002	$2,\!1,\!0,\!0,\!0,\!0$	2.17e-002	-0.243	0.058
128	2, 1, 4, 1, 2, 1	2.42e-002	4.15e-002	$2,\!1,\!0,\!0,\!0,\!0$	3.24e-002	-0.254	0.283
160	2,1,4,1,2,1	4.64e-002	7.17e-002	$2,\!1,\!0,\!0,\!0,\!0$	6.14e-002	-0.245	0.167
192	2, 1, 4, 1, 2, 1	7.92e-002	1.02e-001	$2,\!1,\!4,\!1,\!2,\!1$	1.02e-001	-0.226	0.000
224	2, 1, 4, 1, 2, 1	1.25e-001	1.51e-001	$2,\!1,\!4,\!1,\!2,\!1$	1.51e-001	-0.172	0.000
256	2,1,4,1,2,1	1.85e-001	2.45e-001	$2,\!2,\!4,\!1,\!2,\!1$	1.99e-001	-0.073	0.230

表 43 Himeno BMT の予測結果, hetero7, nnls

表 44 Himeno BMT の相関係数

	1.5	TT IIIIIU	\mathbf{D}		
N	homo ls	homo nnls	hetero1 nnls	hetero4 nnls	hetero7 nnls
32	-0.255589146	0.987654821	0.987654821	0.579068981	0.603958254
48	-0.309244687	0.356947498	0.345948287	0.630619377	0.909959798
64	-0.383836129	0.504025873	0.511308965	0.888034472	0.887851644
80	-0.305875359	0.938195489	0.944135632	0.937909051	0.916788593
96	-0.267875589	0.937388385	0.940409376	0.975939658	0.952567939
112	0.621320065	0.483676826	0.483652636	0.462801608	0.222037535
128	0.863867636	0.812493808	0.812946454	0.804645344	0.282400104
160	0.814678798	0.770667123	0.770877852	0.787281474	0.285189024
192	0.529856803	0.908259383	0.908548964	0.901293333	0.504425716
224	-0.136846248	0.916653524	0.916855520	0.918139215	0.467540492
256	-0.306272537	0.787147098	0.787198617	0.781487428	0.477092474

表45 Himeno BMTのNP-Tモデルの係数, homo, ls

	k_0	k_1	k_2	k_3
$M_1 = 1$	2.945607e-008	-1.419387e-006	1.332722e-004	-1.802084e-002
$M_1 = 2$	-2.631188e-007	8.748235e-005	-8.557050e-003	2.990902e-001
$M_1 = 3$	-4.467610e-007	1.556634e-004	-1.592295e-002	6.937027e-001
$M_2 = 1$	7.207429e-008	6.587163e-006	-1.385141e-003	9.204634e-002
$M_2 = 2$	-7.153140e-006	2.448508e-003	-2.580271e-001	7.352190e + 000
$M_3 = 1$	1.092448e-007	-3.964721e-006	-4.442410e-004	2.977065e-002
	k_4	k_5	k_6	k_7
$M_1 = 1$	k_4 8.063727e-007	k ₅ -6.438932e-005	k_6 1.115785e-002	k ₇ -3.892551e-003
$M_1 = 1$ $M_1 = 2$	$\frac{k_4}{8.063727\text{e-}007}$ $4.647307\text{e-}006$	$\begin{array}{c} k_5 \\ \hline -6.438932e-005 \\ -1.836202e-004 \end{array}$	$\frac{k_6}{1.115785e-002}$ -2.879176e-002	k ₇ -3.892551e-003 8.345865e-003
$M_1 = 1$ $M_1 = 2$ $M_1 = 3$	$\begin{array}{c} k_4 \\ \hline 8.063727 \text{e-}007 \\ 4.647307 \text{e-}006 \\ \hline 6.755312 \text{e-}006 \end{array}$	$\begin{array}{c} k_5 \\ -6.438932e{-}005 \\ -1.836202e{-}004 \\ -1.947506e{-}004 \end{array}$	$\begin{array}{c} k_6 \\ \hline 1.115785e-002 \\ -2.879176e-002 \\ -8.591099e-002 \end{array}$	$\begin{array}{c} k_7 \\ -3.892551e{-}003 \\ 8.345865e{-}003 \\ 2.258756e{-}002 \end{array}$
$M_1 = 1$ $M_1 = 2$ $M_1 = 3$ $M_2 = 1$	$\begin{array}{r} k_4 \\ \hline 8.063727e\text{-}007 \\ 4.647307e\text{-}006 \\ 6.755312e\text{-}006 \\ -1.878883e\text{-}007 \end{array}$	$\begin{array}{r} k_5 \\ \hline -6.438932e-005 \\ -1.836202e-004 \\ -1.947506e-004 \\ 2.767282e-004 \end{array}$	$\begin{array}{c} k_6 \\ \hline 1.115785e{-}002 \\ -2.879176e{-}002 \\ -8.591099e{-}002 \\ -3.946698e{-}002 \end{array}$	$\begin{array}{c} k_7 \\ \hline -3.892551e{-}003 \\ 8.345865e{-}003 \\ 2.258756e{-}002 \\ 1.121565e{-}002 \end{array}$
	$\begin{array}{c} k_4 \\ \hline 8.063727e\text{-}007 \\ 4.647307e\text{-}006 \\ 6.755312e\text{-}006 \\ -1.878883e\text{-}007 \\ 5.675835e\text{-}006 \end{array}$	$\begin{array}{c} k_5 \\ \hline -6.438932e-005 \\ -1.836202e-004 \\ -1.947506e-004 \\ 2.767282e-004 \\ 6.028729e-003 \end{array}$	$\begin{array}{c} k_6 \\ \hline 1.115785e-002 \\ -2.879176e-002 \\ -8.591099e-002 \\ -3.946698e-002 \\ -3.118130e-001 \end{array}$	$\begin{array}{c} k_7 \\ \hline -3.892551e{-}003 \\ 8.345865e{-}003 \\ 2.258756e{-}002 \\ 1.121565e{-}002 \\ -1.091838e{-}002 \end{array}$

<u>nimeno divi</u>	<u>Ι </u>		<u>nomo, nuis</u>
k_0	k_1	k_2	k_3
2.609719e-008	0.000000e+000	0.000000e+000	0.000000e+000
9.726522e-009	0.000000e+000	0.000000e+000	0.000000e+000
2.700053e-008	0.000000e+000	0.000000e+000	0.000000e+000
7.494431e-008	0.000000e+000	0.000000e+000	0.000000e+000
0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
8.030480e-008	0.000000e+000	0.000000e+000	0.000000e+000
k_4	k_5	k_6	k_7
4.305281e-007	0.000000e+000	0.000000e+000	0.000000e+000
3.127261e-006	0.000000e+000	0.000000e+000	0.000000e+000
4.835168e-006	0.000000e+000	0.000000e+000	0.000000e+000
9.143178e-007	0.000000e+000	0.000000e+000	0.000000e+000
2.205177e-005	0.000000e+000	0.000000e+000	0.000000e+000
9.580882e-007	0.000000e+000	0.000000e+000	0.000000e+000
	$\begin{array}{r} \text{Himeho Bive} \\ k_0 \\ \hline k_1 \\ \hline k_1 \\ \hline k_1 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_1 \\ \hline k_1 \\ \hline k_2 \\ \hline k_1 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_1 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline k_2 \\ \hline $	k ₀ k ₁ k_0 k_1 2.609719e-008 0.000000e+000 9.726522e-009 0.000000e+000 2.700053e-008 0.000000e+000 7.494431e-008 0.000000e+000 0.000000e+000 0.000000e+000 8.030480e-008 0.000000e+000 k_4 k_5 4.305281e-007 0.000000e+000 3.127261e-006 0.000000e+000 9.143178e-007 0.000000e+000 2.205177e-005 0.000000e+000 9.580882e-007 0.000000e+000	himenobybyby k_0 k_1 k_2 2.609719e-0080.000000e+0000.000000e+0009.726522e-0090.000000e+0000.000000e+0002.700053e-0080.000000e+0000.000000e+0007.494431e-0080.000000e+0000.000000e+0000.00000e+0000.00000e+0000.000000e+0008.030480e-0080.00000e+0000.000000e+000 k_4 k_5 k_6 4.305281e-0070.00000e+0000.00000e+0003.127261e-0060.00000e+0000.00000e+0004.835168e-0060.00000e+0000.00000e+0009.143178e-0070.00000e+0000.00000e+0002.205177e-0050.00000e+0000.00000e+0009.580882e-0070.00000e+0000.00000e+000

表46_Himeno BMTのNP-Tモデルの係数,homo,nnls

表47 Himeno BMT の NP-T モデルの係数, hetero1, nnls

	k_0	k_1	k_2	k_3
$M_2 = 1$	7.496369e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	8.042798e-008	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	9.117592e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	2.248227e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	9.514819e-007	0.000000e+000	0.000000e+000	0.000000e+000

表48 Himeno BMT の NP-T モデルの係数, hetero4, nnls

	k_0	k_1	k_2	k_3
$M_2 = 1$	7.727369e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	1.706826e-007	1.063182e-005	0.000000e+000	0.000000e+000
$M_3 = 1$	8.358470e-008	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	k_4 7.648428e-007	k_5 0.000000e+000	k_6 0.000000e+000	$\frac{k_7}{0.000000e+000}$
$M_2 = 1$ $M_2 = 2$	$\frac{k_4}{7.648428e-007}$ 8.623342e-006	$\frac{k_5}{0.000000e+000}$ 0.000000e+000	$\frac{k_6}{0.000000e+000}$ 0.000000e+000	$\frac{k_7}{0.000000e+000}$ 0.000000e+000

表49 Himeno BMTのNP-Tモデルの係数, hetero7, nnls

	k_0	k_1	k_2	k_3
$M_2 = 1$	8.421571e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	2.351776e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	8.578922e-008	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	1.280945e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	3.774270e-007	0.000000e+000	0.000000e+000	7.725185e-004

	予測最良構成			え 実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
60	1,2,0,0,1,1	-0.06	1.27	2,1,0,0,0,0	0.70	-1.092	0.799
120	2,1,4,1,0,0	4.44	4.26	$2,\!2,\!4,\!1,\!2,\!1$	3.09	0.437	0.379
180	2,1,4,1,0,0	13.41	13.45	$2,\!2,\!4,\!1,\!2,\!1$	9.77	0.372	0.376
240	2,2,4,1,0,0	24.53	23.75	$2,\!2,\!4,\!1,\!2,\!1$	21.92	0.119	0.083
300	2,2,4,1,2,1	44.58	41.75	$2,\!2,\!4,\!1,\!2,\!1$	41.75	0.068	0.000
360	2,2,4,1,2,1	72.89	70.96	$2,\!2,\!4,\!1,\!2,\!1$	70.96	0.027	0.000
420	2,2,4,1,2,1	112.43	110.76	$2,\!2,\!4,\!1,\!2,\!1$	110.76	0.015	0.000
480	2,2,4,1,2,1	165.20	163.55	$2,\!2,\!4,\!1,\!2,\!1$	163.55	0.010	0.000
510	2,2,4,1,2,1	197.17	197.08	$2,\!2,\!4,\!1,\!2,\!1$	197.08	0.000	0.000
540	2,2,4,1,2,1	233.18	232.17	$2,\!2,\!4,\!1,\!2,\!1$	232.17	0.004	0.000
570	2,2,4,1,2,1	273.50	274.96	$2,\!2,\!4,\!1,\!2,\!1$	274.96	-0.005	0.000
600	2,2,4,1,2,1	318.36	319.95	$2,\!2,\!4,\!1,\!2,\!1$	319.95	-0.005	0.000

表 50 hpcmw-solver-test の予測結果, homo, ls

表 51 hpcmw-solver-test の予測結果, homo, nnls

	予測最良	構成		Ę	実測最良構成			
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$	
60	2,1,0,0,0,0	0.82	0.70	2,1,0,0,0,0	0.70	0.171	0.000	
120	$2,\!2,\!4,\!1,\!0,\!0$	3.85	3.74	$2,\!2,\!4,\!1,\!2,\!1$	3.09	0.245	0.212	
180	$2,\!2,\!4,\!1,\!2,\!1$	10.16	9.77	$2,\!2,\!4,\!1,\!2,\!1$	9.77	0.040	0.000	
240	2,2,4,1,2,1	21.82	21.92	$2,\!2,\!4,\!1,\!2,\!1$	21.92	-0.004	0.000	
300	$2,\!2,\!4,\!1,\!2,\!1$	41.02	41.75	$2,\!2,\!4,\!1,\!2,\!1$	41.75	-0.017	0.000	
360	$2,\!2,\!4,\!1,\!2,\!1$	69.62	70.96	$2,\!2,\!4,\!1,\!2,\!1$	70.96	-0.019	0.000	
420	$2,\!2,\!4,\!1,\!2,\!1$	109.52	110.76	$2,\!2,\!4,\!1,\!2,\!1$	110.76	-0.011	0.000	
480	$2,\!2,\!4,\!1,\!2,\!1$	162.57	163.55	$2,\!2,\!4,\!1,\!2,\!1$	163.55	-0.006	0.000	
510	2,2,4,1,2,1	194.61	197.08	2,2,4,1,2,1	197.08	-0.012	0.000	
540	$2,\!2,\!4,\!1,\!2,\!1$	230.66	232.17	$2,\!2,\!4,\!1,\!2,\!1$	232.17	-0.007	0.000	
570	2,2,4,1,2,1	270.93	274.96	$2,\!2,\!4,\!1,\!2,\!1$	274.96	-0.015	0.000	
600	$2,\!2,\!4,\!1,\!2,\!1$	315.66	319.95	$2,\!2,\!4,\!1,\!2,\!1$	319.95	-0.013	0.000	

表 52 hpcmw-solver-test の予測結果, hetero1, nnls 予測最良構成 実測最良構成 $\hat{\tau}$ \hat{T} N $P_1,\,M_1,\,P_2,\,M_2,\,P_3,\,M_3$ τ $P_1,\,M_1,\,P_2,\,M_2,\,P_3,\,M_3$ $(\tau - \hat{T})/\hat{T}$ $(\hat{\tau} - \hat{T})/\hat{T}$ 60 2,1,0,0,0,0 0.820.70 2,1,0,0,0,0 0.700.1710.0001202,2,4,1,0,03.833.742,2,4,1,2,13.090.2390.212 $2,\!2,\!4,\!1,\!2,\!1$ 10.12 $2,\!2,\!4,\!1,\!2,\!1$ 1809.77 9.770.0350.000240 $2,\!2,\!4,\!1,\!2,\!1$ 21.7121.92 $2,\!2,\!4,\!1,\!2,\!1$ 21.92-0.009 0.000300 2, 2, 4, 1, 2, 140.8341.75 $2,\!2,\!4,\!1,\!2,\!1$ 41.75-0.022 0.0002,2,4,1,2,1 69.3470.962,2,4,1,2,170.96 -0.023 0.000 360 2,2,4,1,2,1109.14 2,2,4,1,2,1 420 110.76 110.76 -0.015 0.0002, 2, 4, 1, 2, 1162.082, 2, 4, 1, 2, 1480163.55163.55-0.0090.0002, 2, 4, 1, 2, 1 $2,\!2,\!4,\!1,\!2,\!1$ 197.08510194.08197.08-0.0150.0005402, 2, 4, 1, 2, 1230.07232.172, 2, 4, 1, 2, 1232.17-0.009 0.0005702, 2, 4, 1, 2, 1270.29274.962, 2, 4, 1, 2, 1274.96-0.017 0.000 600 2, 2, 4, 1, 2, 1314.97319.952, 2, 4, 1, 2, 1319.95-0.016 0.000

	<u> 、 、 、 、 、 、 、 、 、 、 、 、 、 </u>						
	」。」以取以供以			大府取区開成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{\tau}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
60	2,1,0,0,0,0	0.82	0.70	2,1,0,0,0,0	0.70	0.171	0.000
120	2,2,4,1,0,0	3.75	3.74	$2,\!2,\!4,\!1,\!2,\!1$	3.09	0.215	0.212
180	2,2,4,1,2,1	9.96	9.77	$2,\!2,\!4,\!1,\!2,\!1$	9.77	0.019	0.000
240	2,2,4,1,2,1	21.56	21.92	$2,\!2,\!4,\!1,\!2,\!1$	21.92	-0.017	0.000
300	2,2,4,1,2,1	40.67	41.75	$2,\!2,\!4,\!1,\!2,\!1$	41.75	-0.026	0.000
360	2,2,4,1,2,1	69.18	70.96	$2,\!2,\!4,\!1,\!2,\!1$	70.96	-0.025	0.000
420	2,2,4,1,2,1	108.98	110.76	$2,\!2,\!4,\!1,\!2,\!1$	110.76	-0.016	0.000
480	2,2,4,1,2,1	161.93	163.55	$2,\!2,\!4,\!1,\!2,\!1$	163.55	-0.010	0.000
510	2,2,4,1,2,1	193.93	197.08	$2,\!2,\!4,\!1,\!2,\!1$	197.08	-0.016	0.000
540	2,2,4,1,2,1	229.93	232.17	$2,\!2,\!4,\!1,\!2,\!1$	232.17	-0.010	0.000
570	2,2,4,1,2,1	270.15	274.96	2, 2, 4, 1, 2, 1	274.96	-0.017	0.000
600	2,2,4,1,2,1	314.84	319.95	2,2,4,1,2,1	319.95	-0.016	0.000

表 53 hpcmw-solver-test の予測結果, hetero4, nnls

表 54 hpcmw-solver-test の予測結果, hetero7, nnls

	予測最良構成			実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
60	2,1,0,0,0,0	0.82	0.70	2,1,0,0,0,0	0.70	0.171	0.000
120	2,2,4,1,2,1	3.24	3.09	$2,\!2,\!4,\!1,\!2,\!1$	3.09	0.050	0.000
180	2,2,4,1,2,1	9.51	9.77	$2,\!2,\!4,\!1,\!2,\!1$	9.77	-0.027	0.000
240	2,2,4,1,2,1	20.85	21.92	2,2,4,1,2,1	21.92	-0.049	0.000
300	2,2,4,1,2,1	39.55	41.75	$2,\!2,\!4,\!1,\!2,\!1$	41.75	-0.053	0.000
360	2,2,4,1,2,1	67.76	70.96	2,2,4,1,2,1	70.96	-0.045	0.000
420	2,2,4,1,2,1	107.10	110.76	$2,\!2,\!4,\!1,\!2,\!1$	110.76	-0.033	0.000
480	2,2,4,1,2,1	159.43	163.55	2, 2, 4, 1, 2, 1	163.55	-0.025	0.000
510	2,2,4,1,2,1	191.05	197.08	2,2,4,1,2,1	197.08	-0.031	0.000
540	2,2,4,1,2,1	226.61	232.17	2,2,4,1,2,1	232.17	-0.024	0.000
570	2,2,4,1,2,1	266.35	274.96	2,2,4,1,2,1	274.96	-0.031	0.000
600	2,2,4,1,2,1	310.49	319.95	2,2,4,1,2,1	319.95	-0.030	0.000

表 55 hpcmw-solver-test の相関係数

N	homo ls	homo nnls	hetero1 nnls	hetero4 nnls	hetero7 nnls
60	0.497268974	0.098147574	0.116637082	-0.033784190	0.066709050
120	0.190899873	0.771765555	0.769493035	0.702357562	0.659774211
180	0.595660439	0.884277828	0.860917451	0.868658495	0.817430762
240	0.845532617	0.795529307	0.996028280	0.912192288	0.871195833
300	0.881964629	0.889866169	0.841399504	0.915718348	0.856506494
360	0.896380957	0.893202984	0.893239991	0.875145931	0.821385483
420	0.894213598	0.901986788	0.893443005	0.903041703	0.868258305
480	0.954014452	0.966951012	0.960615076	0.973274572	0.959811785
510	0.971968699	0.983647029	0.981927622	0.980828777	0.965009557
540	0.945871183	0.965667571	0.963652943	0.965859668	0.955855426
570	0.968076299	0.975434899	0.978337689	0.962953947	0.942959709
600	0.952358278	0.973042892	0.971265620	0.974763547	0.969296793

	$-k_0$	k_1	k_2	k_3
$M_1 = 1$	5.796989e-006	7.044053e-005	-2.996233e-002	1.554919e + 001
$M_1 = 2$	1.506585e-005	-2.356578e-003	3.852112e-001	-7.148401e+001
$M_1 = 3$	2.542235e-005	-4.462931e-003	6.195597e-001	5.049319e + 001
$M_2 = 1$	1.246324e-005	1.513733e-004	-5.107616e-002	3.067575e + 001
$M_2 = 2$	2.740998e-005	-3.974365e-003	4.693696e-001	-1.909614e+001
$M_3 = 1$	1.531509e-005	-4.486550e-004	4.730704e-002	4.505540e + 001
	k_4	k_5	k_6	k_7
$M_1 = 1$	k_4 -1.417498e-005	$\frac{k_5}{1.066140e-002}$	$\frac{k_6}{-9.990530e+000}$	$\frac{k_7}{4.033939e+000}$
$M_1 = 1$ $M_1 = 2$		$\frac{k_5}{1.066140e-002}$ -1.469699e-002	$\begin{array}{c} k_6 \\ -9.990530e{+}000 \\ 2.469449e{+}001 \end{array}$	$\frac{k_7}{4.033939e+000}$ -7.491940e+000
$M_1 = 1$ $M_1 = 2$ $M_1 = 3$	$\begin{array}{r} k_4 \\ \hline -1.417498e\text{-}005 \\ 1.238737e\text{-}004 \\ 2.128807e\text{-}005 \end{array}$	$\begin{array}{c} k_5 \\ \hline 1.066140e-002 \\ -1.469699e-002 \\ \hline 2.623426e-002 \end{array}$	$\begin{array}{c} k_6 \\ \hline -9.990530e{+}000 \\ 2.469449e{+}001 \\ -2.429961e{+}001 \end{array}$	$\frac{k_7}{4.033939e+000}$ -7.491940e+000 7.085778e+000
$M_1 = 1$ $M_1 = 2$ $M_1 = 3$ $M_2 = 1$	$\begin{array}{r} k_4 \\ \hline -1.417498e{-}005 \\ 1.238737e{-}004 \\ 2.128807e{-}005 \\ -2.296496e{-}005 \end{array}$	$\frac{k_5}{1.066140e-002}$ -1.469699e-002 2.623426e-002 1.526379e-002	$\begin{array}{c} k_6 \\ \hline -9.990530e{+}000 \\ 2.469449e{+}001 \\ -2.429961e{+}001 \\ -1.983486e{+}001 \end{array}$	$\frac{k_7}{4.033939e+000}$ -7.491940e+000 7.085778e+000 8.220679e+000
$ \begin{array}{r} M_1 = 1 \\ M_1 = 2 \\ M_1 = 3 \\ M_2 = 1 \\ M_2 = 2 \end{array} $	$\begin{array}{c} k_4 \\ \hline -1.417498e{-}005 \\ 1.238737e{-}004 \\ 2.128807e{-}005 \\ -2.296496e{-}005 \\ 3.107184e{-}004 \end{array}$	$\begin{array}{c} k_5 \\ \hline 1.066140e-002 \\ -1.469699e-002 \\ 2.623426e-002 \\ 1.526379e-002 \\ 1.699328e-002 \end{array}$	$\begin{array}{c} k_6 \\ \hline -9.990530e{+}000 \\ 2.469449e{+}001 \\ -2.429961e{+}001 \\ -1.983486e{+}001 \\ 2.484726e{+}000 \end{array}$	$\frac{k_7}{4.033939e+000}$ -7.491940e+000 7.085778e+000 8.220679e+000 -1.718779e+000

<u>表 56</u> hpcmw-solver-testのNP-Tモデルの係数,homo,ls

表 57 hpcmw-solver-test の NP-T モデルの係数, homo, nnls

	k_0	k_1	k_2	k_3
$M_1 = 1$	5.804328e-006	0.000000e+000	0.000000e+000	0.000000e+000
$M_1 = 2$	1.139872e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_1 = 3$	1.783769e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 1$	1.254883e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	2.046727e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.447848e-005	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_1 = 1$	k_4 8.101327e-006	k_5 0.000000e+000	k_6 0.000000e+000	k_7 2.429288e-001
$M_1 = 1$ $M_1 = 2$	$\frac{k_4}{8.101327\text{e-}006}$ 8.838645e-005	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_6 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\frac{k_7}{2.429288\text{e-}001}$ 0.000000e+000
$M_1 = 1$ $M_1 = 2$ $M_1 = 3$	$\begin{array}{c} k_4 \\ \hline 8.101327e\text{-}006 \\ \hline 8.838645e\text{-}005 \\ \hline 7.268749e\text{-}005 \end{array}$	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_6 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_7 \\ \hline 2.429288 \text{e-}001 \\ 0.000000 \text{e}{+}000 \\ 7.421469 \text{e-}001 \end{array}$
$M_1 = 1$ $M_1 = 2$ $M_1 = 3$ $M_2 = 1$	$\begin{array}{c} k_4 \\ \hline 8.101327e{-}006 \\ 8.838645e{-}005 \\ 7.268749e{-}005 \\ 9.144544e{-}006 \end{array}$	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_6 \\ \hline 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \end{array}$	$\begin{array}{c} k_7 \\ \hline 2.429288e{-}001 \\ 0.000000e{+}000 \\ \hline 7.421469e{-}001 \\ 4.827170e{-}001 \end{array}$
$ \begin{array}{r} M_1 = 1 \\ M_1 = 2 \\ M_1 = 3 \\ M_2 = 1 \\ M_2 = 2 \end{array} $	$\begin{array}{c} k_4 \\ \hline 8.101327e{-}006 \\ 8.838645e{-}005 \\ 7.268749e{-}005 \\ 9.144544e{-}006 \\ 3.188739e{-}004 \end{array}$	$\begin{array}{c} k_5 \\ \hline 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \end{array}$	$\begin{array}{c} k_6 \\ \hline 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \end{array}$	$\begin{array}{c} k_7 \\ \hline 2.429288e-001 \\ 0.000000e+000 \\ 7.421469e-001 \\ 4.827170e-001 \\ 0.000000e+000 \end{array}$

表 <u>58</u> hpcmw-solver-test の NP-T モデルの係数, hetero1, nnls

	k_0	k_1	k_2	k_3
$M_2 = 1$	1.255008e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	1.997485e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.450067e-005	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	k_4 9.038654e-006	k_5 0.000000e+000	k_6 0.000000e+000	$\frac{k_7}{4.735159e-001}$
$M_2 = 1$ $M_2 = 2$	$\frac{k_4}{9.038654\text{e-}006}$ $3.569543\text{e-}004$	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\frac{k_6}{0.000000e+000}$ 0.000000e+000	$\frac{k_7}{4.735159\text{e-}001}$ 0.000000e+000

	k_0	k_1	k_2	k_3
$M_2 = 1$	1.254815e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	2.200350e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.450659e-005	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	k_4 9.891270e-006	k_5 0.000000e+000	k_6 0.000000e+000	k_7 4.329016e-001
$M_2 = 1$ $M_2 = 2$	$\frac{k_4}{9.891270e-006}$ 2.004671e-004	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\frac{k_6}{0.000000e+000}$ 0.000000e+000	$\frac{k_7}{4.329016\text{e-}001}$ 0.000000e+000

表 59 hpcmw-solver-test の NP-T モデルの係数, hetero4, nnls

表 60 hpcmw-solver-test の NP-T モデルの係数, hetero7, nnls

	κ_0	κ_1	κ_2	<i>k</i> ₃
$M_2 = 1$	1.248874e-005	2.897741e-005	0.000000e+000	0.000000e+000
$M_2 = 2$	2.303101e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.431802e-005	0.000000e+000	1.097377e-002	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	0.000000e+000	0.000000e+000	0.000000e+000	2.358979e-001
$M_2 = 2$	9.407462e-005	0.000000e+000	8.486485e-002	2.193005e-002
1/ 1		0 000000 1 000	0.000000 1.000	0 400714 001

表 61 FFTE の予測結果, homo, ls

	予測最良構成			実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	0,0,4,2,0,0	-2.71e-002	1.36e-003	1,1,0,0,0,0	3.63e-004	-75.645	2.752
2^{13}	0,0,4,2,0,0	-2.91e-002	2.66e-003	1,1,0,0,0,0	7.41e-004	-40.334	2.594
2^{14}	0,0,4,2,0,0	-2.53e-002	4.78e-003	1,1,0,0,0,0	1.50e-003	-17.887	2.187
2^{15}	0,0,4,2,0,0	-1.03e-002	8.12e-003	1,1,0,0,0,0	3.13e-003	-4.293	1.596
2^{16}	1,1,0,0,0,0	9.08e-003	8.55e-003	1, 1, 0, 0, 0, 0	8.55e-003	0.062	0.000
2^{17}	1,1,0,0,0,0	2.01e-002	2.11e-002	$2,\!3,\!4,\!2,\!2,\!1$	2.09e-002	-0.037	0.010
2^{18}	1,1,0,0,0,0	4.27e-002	4.30e-002	1,1,0,0,0,0	4.30e-002	-0.006	0.000
2^{19}	1,1,0,0,0,0	8.83e-002	8.77e-002	1,1,0,0,0,0	8.77e-002	0.006	0.000
2^{20}	1,1,0,0,0,0	1.79e-001	1.79e-001	1, 1, 0, 0, 0, 0	1.79e-001	-0.001	0.000
2^{21}	0,0,2,2,0,0	-4.34e-001	1.34e + 000	1,2,0,0,0,0	4.94e-001	-1.880	1.714
2^{22}	0,0,2,2,0,0	-4.21e+000	2.97e + 000	2, 1, 4, 1, 2, 1	1.34e + 000	-4.129	1.209
2^{23}	0,0,4,2,0,0	-6.05e+000	4.98e+000	2,1,4,1,2,1	2.75e+000	-3.201	0.811

	予測	最良構成			実測最良構成		
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	1,1,0,0,0,0	5.43e-004	3.63e-004	1,1,0,0,0,0	3.63e-004	0.497	0.000
2^{13}	1,1,0,0,0,0	1.13e-003	7.41e-004	$1,\!1,\!0,\!0,\!0,\!0$	7.41e-004	0.520	0.000
2^{14}	1,1,0,0,0,0	2.33e-003	1.50e-003	$1,\!1,\!0,\!0,\!0,\!0$	1.50e-003	0.555	0.000
2^{15}	1,1,0,0,0,0	4.82e-003	3.13e-003	$1,\!1,\!0,\!0,\!0,\!0$	3.13e-003	0.542	0.000
2^{16}	1,1,0,0,0,0	9.96e-003	8.55e-003	$1,\!1,\!0,\!0,\!0,\!0$	8.55e-003	0.165	0.000
2^{17}	1,1,0,0,0,0	2.06e-002	2.11e-002	$2,\!3,\!4,\!2,\!2,\!1$	2.09e-002	-0.016	0.010
2^{18}	1,1,0,0,0,0	4.24e-002	4.30e-002	$1,\!1,\!0,\!0,\!0,\!0$	4.30e-002	-0.014	0.000
2^{19}	1,1,0,0,0,0	8.73e-002	8.77e-002	$1,\!1,\!0,\!0,\!0,\!0$	8.77e-002	-0.005	0.000
2^{20}	1, 1, 0, 0, 0, 0	1.80e-001	1.79e-001	$1,\!1,\!0,\!0,\!0,\!0$	1.79e-001	0.002	0.000
2^{21}	1,2,0,0,0,0	5.12e-001	4.94e-001	1,2,0,0,0,0	4.94e-001	0.038	0.000
2^{22}	2, 1, 4, 1, 2, 1	1.07e + 000	1.34e + 000	$2,\!1,\!4,\!1,\!2,\!1$	1.34e + 000	-0.208	0.000
2^{23}	2,1,4,1,2,1	2.14e + 000	2.75e+000	2,1,4,1,2,1	2.75e + 000	-0.220	0.000

表 62 FFTE の予測結果, homo, nnls

表 63 FFTE の予測結果, hetero1, nnls

	予測	最良構成			実測最良構成		
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	1,1,0,0,0,0	5.43e-004	3.63e-004	1,1,0,0,0,0	3.63e-004	0.497	0.000
2^{13}	1,1,0,0,0,0	1.13e-003	7.41e-004	1,1,0,0,0,0	7.41e-004	0.520	0.000
2^{14}	1,1,0,0,0,0	2.33e-003	1.50e-003	1,1,0,0,0,0	1.50e-003	0.555	0.000
2^{15}	1,1,0,0,0,0	4.82e-003	3.13e-003	1,1,0,0,0,0	3.13e-003	0.542	0.000
2^{16}	1,1,0,0,0,0	9.96e-003	8.55e-003	1,1,0,0,0,0	8.55e-003	0.165	0.000
2^{17}	1,1,0,0,0,0	2.06e-002	2.11e-002	$2,\!3,\!4,\!2,\!2,\!1$	2.09e-002	-0.016	0.010
2^{18}	1,1,0,0,0,0	4.24e-002	4.30e-002	1,1,0,0,0,0	4.30e-002	-0.014	0.000
2^{19}	1,1,0,0,0,0	8.73e-002	8.77e-002	1,1,0,0,0,0	8.77e-002	-0.005	0.000
2^{20}	1,1,0,0,0,0	1.80e-001	1.79e-001	1,1,0,0,0,0	1.79e-001	0.002	0.000
2^{21}	1,2,0,0,0,0	5.12e-001	4.94e-001	1,2,0,0,0,0	4.94e-001	0.038	0.000
2^{22}	2,1,4,1,2,1	1.06e + 000	1.34e + 000	2,1,4,1,2,1	1.34e + 000	-0.214	0.000
2^{23}	2,1,4,1,2,1	2.13e+000	2.75e + 000	2,1,4,1,2,1	2.75e + 000	-0.224	0.000

	予測	最良構成			実測最良構成		
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	1,1,0,0,0,0	5.43e-004	3.63e-004	1,1,0,0,0,0	3.63e-004	0.497	0.000
2^{13}	1,1,0,0,0,0	1.13e-003	7.41e-004	1,1,0,0,0,0	7.41e-004	0.520	0.000
2^{14}	1,1,0,0,0,0	2.33e-003	1.50e-003	1,1,0,0,0,0	1.50e-003	0.555	0.000
2^{15}	1, 1, 0, 0, 0, 0	4.82e-003	3.13e-003	1,1,0,0,0,0	3.13e-003	0.542	0.000
2^{16}	1,1,0,0,0,0	9.96e-003	8.55e-003	1,1,0,0,0,0	8.55e-003	0.165	0.000
2^{17}	1,1,0,0,0,0	2.06e-002	2.11e-002	$2,\!3,\!4,\!2,\!2,\!1$	2.09e-002	-0.016	0.010
2^{18}	1,1,0,0,0,0	4.24e-002	4.30e-002	1,1,0,0,0,0	4.30e-002	-0.014	0.000
2^{19}	1,1,0,0,0,0	8.73e-002	8.77e-002	1,1,0,0,0,0	8.77e-002	-0.005	0.000
2^{20}	1,1,0,0,0,0	1.80e-001	1.79e-001	1,1,0,0,0,0	1.79e-001	0.002	0.000
2^{21}	1,2,0,0,0,0	5.12e-001	4.94e-001	1,2,0,0,0,0	4.94e-001	0.038	0.000
2^{22}	2,1,4,1,2,1	1.05e+000	1.34e + 000	2,1,4,1,2,1	1.34e + 000	-0.217	0.000
2^{23}	2,1,4,1,2,1	2.14e + 000	2.75e+000	2,1,4,1,2,1	2.75e + 000	-0.221	0.000

表 64 FFTE の予測結果, hetero4, nnls

表 65 FFTE の予測結果, hetero7, nnls

	予測	最良構成			実測最良構成		
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	1,1,0,0,0,0	5.43e-004	3.63e-004	1,1,0,0,0,0	3.63e-004	0.497	0.000
2^{13}	$1,\!1,\!0,\!0,\!0,\!0$	1.13e-003	7.41e-004	1,1,0,0,0,0	7.41e-004	0.520	0.000
2^{14}	1, 1, 0, 0, 0, 0	2.33e-003	1.50e-003	1,1,0,0,0,0	1.50e-003	0.555	0.000
2^{15}	1, 1, 0, 0, 0, 0	4.82e-003	3.13e-003	1,1,0,0,0,0	3.13e-003	0.542	0.000
2^{16}	1, 1, 0, 0, 0, 0	9.96e-003	8.55e-003	1,1,0,0,0,0	8.55e-003	0.165	0.000
2^{17}	1, 1, 0, 0, 0, 0	2.06e-002	2.11e-002	$2,\!3,\!4,\!2,\!2,\!1$	2.09e-002	-0.016	0.010
2^{18}	1, 1, 0, 0, 0, 0	4.24e-002	4.30e-002	1,1,0,0,0,0	4.30e-002	-0.014	0.000
2^{19}	1, 1, 0, 0, 0, 0	8.73e-002	8.77e-002	1,1,0,0,0,0	8.77e-002	-0.005	0.000
2^{20}	1, 1, 0, 0, 0, 0	1.80e-001	1.79e-001	1,1,0,0,0,0	1.79e-001	0.002	0.000
2^{21}	$2,\!1,\!4,\!1,\!2,\!1$	5.10e-001	5.02e-001	1,2,0,0,0,0	4.94e-001	0.034	0.017
2^{22}	$2,\!1,\!4,\!1,\!2,\!1$	1.04e + 000	1.34e + 000	2,1,4,1,2,1	1.34e + 000	-0.224	0.000
2^{23}	$2,\!1,\!4,\!1,\!2,\!1$	2.13e + 000	2.75e+000	2,1,4,1,2,1	2.75e+000	-0.223	0.000

表 66 FFTE の相関係数

			「IE の相図	1余安(
N	homo ls	homo nnls	hetero1 nnls	hetero4 nnls	hetero7 nnls
2^{12}	-0.103856745	0.247672724	0.246276427	0.170851273	0.353661946
2^{13}	-0.055268720	0.952964132	0.952964132	0.967592797	0.993011127
2^{14}	-0.376708360	0.952111298	0.952968536	0.970637472	0.999780621
2^{15}	-0.055488646	0.929913237	0.914981643	0.956988058	0.965262590
2^{16}	0.753735449	0.936379701	0.934494169	0.935485326	0.870806626
2^{17}	0.968237719	0.876745988	0.876815113	0.881507904	0.897199719
2^{18}	0.810388310	0.796928250	0.796387766	0.790386212	0.758351696
2^{19}	0.870414890	0.662494461	0.857504935	0.851925661	0.610874371
2^{20}	0.831447766	0.834374687	0.792743830	0.681060608	0.630825055
2^{21}	0.188079958	0.700522699	0.695197427	0.681076822	0.603283755
2^{22}	-0.334594714	0.663851294	0.675367767	0.889152571	0.958641430
2^{23}	-0.260185311	0.059528741	0.095713141	0.938238345	0.991174569

表	67 FFTE (<u> DNP-Tモデ</u>	ルの係数 ,hc	omo, ls
	k_0	k_1	k_2	k_3
$M_1 = 1$	4.250367e-009	4.613467e-007	-4.990833e-002	-3.178944e-003
$M_1 = 2$	2.764509e-007	-3.343785e-006	1.421067e-001	2.969000e-003
$M_2 = 1$	3.694481e-008	4.654631e-007	-8.455814e-002	-5.386204e-003
$M_2 = 2$	-5.037070e-006	7.143968e-005	4.388106e-001	9.631370e-003
$M_3 = 1$	-6.676863e-009	1.058834e-006	-8.565606e-002	-5.421741e-003
	k_4	k_5	k_6	
$M_1 = 1$	7.488875e-008	-3.925997e-005	2.990164e-002	
$M_1 = 2$	1.411380e-007	2.014557e-003	-9.627472e-002	
$M_2 = 1$	1.225864e-007	-3.229656e-005	5.008760e-002	
$M_2 = 2$	4.759768e-007	-3.739195e-003	-1.162465e-001	
$M_3 = 1$	1.358719e-007	-6.502514e-005	5.053177e-002	

表 68 FFTEのNP-T モデルの係数, homo, nnls

	k_0	k_1	k_2	k_3
$M_1 = 1$	1.515696e-008	3.088450e-007	0.000000e+000	0.000000e+000
$M_1 = 2$	0.000000e+000	3.757470e-007	0.000000e+000	0.000000e+000
$M_2 = 1$	4.852267e-008	3.011607e-007	0.000000e+000	0.000000e+000
$M_2 = 2$	0.000000e+000	2.188630e-006	1.980485e-001	0.000000e+000
$M_3 = 1$	1.662987e-008	7.338306e-007	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	
$M_1 = 1$	7.200337e-008	0.000000e+000	0.000000e+000	
$M_1 = 1$ $M_1 = 2$	7.200337e-008 2.774450e-007	0.000000e+000 3.751710e-004	0.000000e+000 0.000000e+000	
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$	7.200337e-008 2.774450e-007 1.209975e-007	0.000000e+000 3.751710e-004 0.000000e+000	0.000000e+000 0.000000e+000 0.000000e+000	
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$ $M_2 = 2$	7.200337e-008 2.774450e-007 1.209975e-007 0.000000e+000	0.000000e+000 3.751710e-004 0.000000e+000 1.064962e-003	0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000	

表 69 FFTEのNP-T モデルの係数,hetero1,nnls____

表6	表 69 FFTEのNP-Tモデルの係数, hetero1, nnls									
	k_0	k_1	k_2	k_3						
$M_2 = 1$	4.836295e-008	3.073176e-007	0.000000e+000	0.000000e+000						
$M_2 = 2$	0.000000e+000	1.982203e-006	1.320339e-001	0.000000e+000						
$M_3 = 1$	1.469447e-008	7.654618e-007	0.000000e+000	0.000000e+000						
	k_4	k_5	k_6							
$M_2 = 1$	1.192564e-007	0.000000e+000	0.000000e+000							
$M_2 = 2$	2.038035e-008	1.471059e-003	0.000000e+000							
$M_3 = 1$	1.282224e-007	0.000000e+000	0.000000e+000							

	k_0	k_1	k_2	k_3
$M_2 = 1$	4.815754e-008	3.068996e-007	0.000000e+000	0.000000e+000
$M_2 = 2$	0.000000e+000	1.414488e-006	2.319281e-001	0.000000e+000
$M_3 = 1$	1.577856e-008	7.881345e-007	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	
$M_2 = 1$	1.206643e-007	0.000000e+000	0.000000e+000	
$M_2 = 2$	1.987114e-007	7.625193e-004	0.000000e+000	
$M_3 = 1$	1.118376e-007	0.000000e+000	0.000000e+000	

表70 FFTEのNP-Tモデルの係数,hetero4,nnls

___表71_FFTEのNP-Tモデルの係数,hetero7,nnls___

	k_0	k_1	k_2	k_3
$M_2 = 1$	6.366453e-008	1.084495e-007	0.000000e+000	0.000000e+000
$M_2 = 2$	0.000000e+000	6.940827 e-007	1.705472e-002	0.000000e+000
$M_3 = 1$	4.704462e-008	2.604137e-007	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	
$M_2 = 1$	1.139432e-007	0.000000e+000	0.000000e+000	
$M_2 = 2$	4.097325e-007	0.000000e+000	0.000000e+000	
$M_{2} = 1$	8 7450610 008	0.0000000000000000000000000000000000000		

A.2 評価2の測定データ

	予測最良構	<u>,</u> 成		J //J/////////////////////////////////	測最良構	成	
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	0,0,2,2,0,0	-0.83	0.27	1,1,0,0,0,0	0.03	-28.827	8.000
600	0,0,2,2,0,0	-0.30	0.59	1,1,0,0,0,0	0.05	-7.044	10.800
800	4, 1, 4, 1, 4, 1	-0.16	0.60	1,1,0,0,0,0	0.12	-2.321	4.000
1200	4, 1, 4, 2, 4, 1	-1.33	1.38	1, 1, 0, 0, 0, 0	0.35	-4.796	2.943
1600	4, 1, 4, 2, 4, 1	-2.40	2.61	1,1,0,0,0,0	0.78	-4.083	2.346
2400	4, 1, 4, 1, 4, 1	-2.54	3.84	4,1,0,0,0,0	1.95	-2.304	0.969
3200	4, 1, 4, 1, 4, 1	-3.88	6.59	4,1,0,0,0,0	3.55	-2.093	0.856
4800	4, 1, 4, 1, 4, 1	-6.00	15.43	4,1,0,0,0,0	8.80	-1.682	0.753
6400	4, 1, 4, 1, 4, 1	-6.58	28.71	4,1,0,0,0,0	17.77	-1.370	0.616
8000	4, 1, 4, 1, 4, 1	-4.54	47.67	4,1,0,0,0,0	31.08	-1.146	0.534
9600	4,1,4,1,4,1	1.23	73.40	4,1,4,1,0,0	47.99	-0.974	0.529

表 72 HPL の予測結果, homo, ls

表73 HPLの予測結果,homo_nnls_____

	予測最良構成			実測最良構成			
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	1,1,0,0,0,0	0.02	0.03	1,1,0,0,0,0	0.03	-0.195	0.000
600	$1,\!1,\!0,\!0,\!0,\!0$	0.06	0.05	1,1,0,0,0,0	0.05	0.294	0.000
800	1,1,0,0,0,0	0.13	0.12	1, 1, 0, 0, 0, 0	0.12	0.111	0.000
1200	$1,\!1,\!0,\!0,\!0,\!0$	0.38	0.35	1,1,0,0,0,0	0.35	0.093	0.000
1600	$1,\!1,\!0,\!0,\!0,\!0$	0.83	0.78	1,1,0,0,0,0	0.78	0.060	0.000
2400	4,1,0,0,0,0	1.94	1.95	4,1,0,0,0,0	1.95	-0.005	0.000
3200	4,1,0,0,0,0	3.62	3.55	4,1,0,0,0,0	3.55	0.020	0.000
4800	4,1,0,0,0,0	9.14	8.80	4,1,0,0,0,0	8.80	0.039	0.000
6400	4,1,0,0,0,0	18.18	17.77	4,1,0,0,0,0	17.77	0.023	0.000
8000	4,1,0,0,0,0	31.47	31.08	4,1,0,0,0,0	31.08	0.013	0.000
9600	4,1,0,0,0,0	49.79	49.85	4,1,4,1,0,0	47.99	0.037	0.039

<u>表 74 HPL の予測結果,hetero1,nnls</u>

	予測最良構成 			実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	1,1,0,0,0,0	0.02	0.03	1,1,0,0,0,0	0.03	-0.195	0.000
600	1,1,0,0,0,0	0.06	0.05	1,1,0,0,0,0	0.05	0.294	0.000
800	1, 1, 0, 0, 0, 0	0.13	0.12	$1,\!1,\!0,\!0,\!0,\!0$	0.12	0.111	0.000
1200	1,1,0,0,0,0	0.38	0.35	1,1,0,0,0,0	0.35	0.093	0.000
1600	1,1,0,0,0,0	0.83	0.78	$1,\!1,\!0,\!0,\!0,\!0$	0.78	0.060	0.000
2400	4,1,0,0,0,0	1.94	1.95	4,1,0,0,0,0	1.95	-0.005	0.000
3200	4,1,0,0,0,0	3.62	3.55	4,1,0,0,0,0	3.55	0.020	0.000
4800	4,1,0,0,0,0	9.14	8.80	4,1,0,0,0,0	8.80	0.039	0.000
6400	4,1,0,0,0,0	18.18	17.77	4,1,0,0,0,0	17.77	0.023	0.000
8000	4,1,0,0,0,0	31.47	31.08	4,1,0,0,0,0	31.08	0.013	0.000
9600	4,1,4,1,0,0	48.71	47.99	4,1,4,1,0,0	47.99	0.015	0.000

	予測最良構成			実測最良構成				
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$	
400	1,1,0,0,0,0	0.02	0.03	1,1,0,0,0,0	0.03	-0.195	0.000	
600	$1,\!1,\!0,\!0,\!0,\!0$	0.06	0.05	$1,\!1,\!0,\!0,\!0,\!0$	0.05	0.294	0.000	
800	$1,\!1,\!0,\!0,\!0,\!0$	0.13	0.12	$1,\!1,\!0,\!0,\!0,\!0$	0.12	0.111	0.000	
1200	$1,\!1,\!0,\!0,\!0,\!0$	0.38	0.35	$1,\!1,\!0,\!0,\!0,\!0$	0.35	0.093	0.000	
1600	$1,\!1,\!0,\!0,\!0,\!0$	0.83	0.78	$1,\!1,\!0,\!0,\!0,\!0$	0.78	0.060	0.000	
2400	4,1,0,0,0,0	1.94	1.95	4,1,0,0,0,0	1.95	-0.005	0.000	
3200	4,1,0,0,0,0	3.62	3.55	4,1,0,0,0,0	3.55	0.020	0.000	
4800	4,1,0,0,0,0	9.14	8.80	4,1,0,0,0,0	8.80	0.039	0.000	
6400	4,1,0,0,0,0	18.18	17.77	4,1,0,0,0,0	17.77	0.023	0.000	
8000	4, 1, 4, 1, 0, 0	31.01	31.38	4,1,0,0,0,0	31.08	-0.002	0.010	
9600	4,1,4,1,0,0	47.61	47.99	4,1,4,1,0,0	47.99	-0.008	0.000	

表75 HPL の予測結果, hetero2, nnls

表76 HPLの予測結果, hetero3, nnls

	予測最良構	梮		実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
400	$1,\!1,\!0,\!0,\!0,\!0$	0.02	0.03	$1,\!1,\!0,\!0,\!0,\!0$	0.03	-0.195	0.000
600	$1,\!1,\!0,\!0,\!0,\!0$	0.06	0.05	$1,\!1,\!0,\!0,\!0,\!0$	0.05	0.294	0.000
800	$1,\!1,\!0,\!0,\!0,\!0$	0.13	0.12	1,1,0,0,0,0	0.12	0.111	0.000
1200	$1,\!1,\!0,\!0,\!0,\!0$	0.38	0.35	$1,\!1,\!0,\!0,\!0,\!0$	0.35	0.093	0.000
1600	$1,\!1,\!0,\!0,\!0,\!0$	0.83	0.78	$1,\!1,\!0,\!0,\!0,\!0$	0.78	0.060	0.000
2400	4,1,0,0,0,0	1.94	1.95	4,1,0,0,0,0	1.95	-0.005	0.000
3200	4,1,0,0,0,0	3.62	3.55	4,1,0,0,0,0	3.55	0.020	0.000
4800	4,1,0,0,0,0	9.14	8.80	4,1,0,0,0,0	8.80	0.039	0.000
6400	4,1,0,0,0,0	18.18	17.77	4,1,0,0,0,0	17.77	0.023	0.000
8000	4,1,0,0,0,0	31.47	31.08	4,1,0,0,0,0	31.08	0.013	0.000
9600	4,1,0,0,0,0	49.79	49.85	4,1,4,1,0,0	47.99	0.037	0.039

表 77	HPLの相関係数
1. 1	

		<u>表77</u> 出	PLの相関係	糸釵	
N	homo ls	homo nnls	hetero1 nnls	hetero2 nnls	hetero3 nnls
400	-0.986359127	0.948683298	0.737209781	0.948683298	0.948683298
600	-0.393395962	1.000000000	1.000000000	1.000000000	1.000000000
800	-0.527585767	0.962760200	0.962760200	0.962760200	0.962760200
1200	-0.265785355	0.536729494	0.442039174	0.880151543	0.818876057
1600	-0.255218469	0.828602030	0.480968710	0.556356189	0.875304448
2400	0.399705917	0.512221310	0.448565147	0.636239461	0.789676953
3200	0.385698869	0.600333066	0.568411757	0.667103951	0.856951360
4800	0.543170585	0.593811030	0.673655270	0.709838431	0.928668587
6400	0.604819635	0.639987173	0.645666407	0.686668970	0.887023396
8000	0.638865658	0.642326361	0.690684076	0.638182262	0.828288537
9600	0.537083046	0.670406082	0.720997793	0.715387674	0.830769627

	衣 (8	HPL ONP-1	モナルの係	gy , homo , ls	
	k_0	k_1	k_2	k_3	k_4
$M_1 = 1$	1.580239e-010	-7.732250e-007	-1.243732e-003	6.749278e-001	-7.277901e-008
$M_1 = 2$	2.361393e-010	9.961794e-007	-1.879849e-002	1.111011e+001	5.615645e-008
$M_2 = 1$	1.864460e-010	-1.076934e-006	-7.131120e-004	1.685261e-001	-1.167724e-007
$M_2 = 2$	5.736471e-010	8.341471e-005	-1.650520e-001	7.060614e + 001	2.563554e-006
$M_3 = 1$	5.351972e-010	-8.549601e-007	-2.099661e-003	6.863451e-001	-1.033542e-007
	k_5	k_6	k_7	k_8	k_9
$M_1 = 1$	-1.323333e-004	8.108805e-002	6.273549e-007	1.085711e-003	-5.110840e-001
$M_1 = 2$	-6.120580e-004	4.623065e-001	-3.340331e-008	7.562573e-003	-4.789381e+000
$M_2 = 1$	-5.187453e-005	3.271714e-002	9.976307e-007	5.206461e-004	-1.555615e-001
$M_2 = 2$	-6.700287e-003	3.697094e + 000	-2.908881e-005	6.859915e-002	-3.382094e+001
$M_3 = 1$	-1.563711e-004	7.755346e-002	9.686293e-007	1.301668e-003	-4.204642e-001

<u>表 78_HPLのNP-Tモデルの係数,homo,ls_</u>

表 79 HPLのNP-T モデルの係数 , homo , nnls

	k_0	k_1	k_2	k_3	k_4
$M_1 = 1$	1.223274e-010	0.000000e+000	0.000000e+000	0.000000e+000	1.031886e-009
$M_1 = 2$	1.446695e-010	0.000000e+000	0.000000e+000	0.000000e+000	4.036167e-009
$M_2 = 1$	1.580316e-010	0.000000e+000	0.000000e+000	0.000000e+000	4.194889e-009
$M_2 = 2$	7.110338e-010	5.816567e-006	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	5.116590e-010	0.000000e+000	0.000000e+000	0.000000e+000	4.542069e-009
-	_				
	k_5	k_6	k_7	k_8	k_9
$M_1 = 1$	k_5 0.000000e+000	k_6 2.575067e-002	k_7 2.413977e-007	k_8 0.000000e+000	k_9 0.000000e+000
$M_1 = 1$ $M_1 = 2$	$\frac{k_5}{0.000000e+000}$ 1.441719e-005	$\begin{array}{c} k_6 \\ \hline 2.575067 \text{e-}002 \\ 4.026104 \text{e-}002 \end{array}$	$\frac{k_7}{2.413977\text{e-}007}$ 6.202987e-007	$\frac{k_8}{0.000000e+000}$ 0.000000e+000	$\begin{array}{c} k_9 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 1.441719e{-}005 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_6\\ \hline 2.575067\text{e-}002\\ 4.026104\text{e-}002\\ \hline 3.647393\text{e-}003 \end{array}$	$\begin{array}{c} k_7 \\ \hline 2.413977 e{-}007 \\ \hline 6.202987 e{-}007 \\ \hline 3.247355 e{-}007 \end{array}$	$\begin{array}{c} k_8 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_9 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$ $M_2 = 2$	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 1.441719e{-}005 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_6 \\ \hline 2.575067e{-}002 \\ 4.026104e{-}002 \\ \hline 3.647393e{-}003 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_7 \\ \hline 2.413977e{-}007 \\ \hline 6.202987e{-}007 \\ \hline 3.247355e{-}007 \\ \hline 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_8 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_9 \\ \hline 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \end{array}$

表80 HPLのNP-Tモデルの係数,hetero1,nnls

	k_0	k_1	k_2	k_3	k_4
$M_2 = 1$	1.571208e-010	0.000000e+000	0.000000e+000	0.000000e+000	4.970911e-010
$M_2 = 2$	6.713291e-010	5.921329e-006	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	5.189048e-010	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
	k_5	k_6	k_7	k_8	k_9
$M_2 = 1$	k_5 0.000000e+000	k ₆ 2.409379e-003	k_7 3.358248e-007	k_8 0.000000e+000	k_9 0.000000e+000
$M_2 = 1$ $M_2 = 2$	$\begin{array}{c} k_5 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\frac{k_6}{2.409379\text{e-}003}\\0.000000\text{e+}000$	$\frac{k_7}{3.358248\text{e-}007}$ 0.000000e+000	$\frac{k_8}{0.000000e+000}$ 0.000000e+000	$\frac{k_9}{0.000000e+000}$ 0.000000e+000

	衣 81 HPL の NP-1 モナルの係数 , netero2 , nnls								
	k_0 k_1		k_2	k_3	k_4				
$M_2 = 1$	1.616674e-010	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000				
$M_2 = 2$	4.696940e-010	6.936885e-006	0.000000e+000	0.000000e+000	0.000000e+000				
$M_3 = 1$	5.373471e-010	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000				
	k_5	k_6	k_7	k_8	k_9				
$M_2 = 1$	0.000000e+000	9.261753e-003	3.217459e-007	0.000000e+000	0.000000e+000				
$M_2 = 2$	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000				
$M_2 - 1$		0.000000 ± 000	3 2820310 007	0.000000 ± 000	9 4726230-002				

表81 HPLのNP-Tモデルの係数,hetero2,nnls

表82 HPLのNP-Tモデルの係数,hetero3,nnls

	k_0	k_1	k_2	k_3	k_4
$M_2 = 1$	1.870268e-010	0.000000e+000	0.000000e+000	0.000000e+000	1.823028e-008
$M_2 = 2$	3.429461e-010	7.311180e-007	0.000000e+000	0.000000e+000	4.792829e-008
$M_3 = 1$	5.363412e-010	0.000000e+000	0.000000e+000	0.000000e+000	8.077453e-010
	k_5	k_6	k_7	k_8	k_9
$M_2 = 1$	0.000000e+000	3.181929e-002	1.967984e-007	0.000000e+000	0.000000e+000
$M_2 = 2$	8.883419e-005	0.000000e+000	2.508696e-008	8.445423e-005	0.000000e+000

表83 Himeno BMT の予測結果, homo, ls

	予測最良構成			実測最良構成				
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$	
32	0,0,4,2,4,1	-3.35e-002	9.18e-004	3,1,0,0,0,0	5.62e-004	-60.524	0.633	
48	$0,\!0,\!4,\!2,\!0,\!0$	-5.41e-002	3.51e-003	4,1,0,0,0,0	1.24e-003	-44.469	1.823	
64	$0,\!0,\!2,\!2,\!0,\!0$	-7.26e-002	1.30e-002	4,1,0,0,0,0	2.60e-003	-28.918	4.007	
80	0,0,4,2,4,1	-2.56e-002	3.39e-002	4,1,0,0,0,0	4.93e-003	-6.195	5.874	
96	$0,\!0,\!4,\!2,\!4,\!1$	-2.00e-002	2.99e-002	4,1,0,0,0,0	9.00e-003	-3.217	2.320	
112	0,0,4,2,4,1	-7.36e-003	3.15e-001	4,1,0,0,0,0	1.48e-002	-1.499	20.385	
128	4, 1, 4, 2, 4, 1	1.23e-002	9.23e-002	4,1,0,0,0,0	2.09e-002	-0.412	3.422	
160	4,1,0,0,0,0	3.90e-002	3.86e-002	4,1,0,0,0,0	3.86e-002	0.010	0.000	
192	4,1,0,0,0,0	6.56e-002	6.55e-002	4,1,0,0,0,0	6.55e-002	0.002	0.000	
224	0,0,2,2,0,0	6.41e-002	8.28e-001	4,1,0,0,0,0	9.94e-002	-0.355	7.325	
256	0,0,2,2,0,0	-9.69e-001	1.28e + 000	4,1,0,0,0,0	1.45e-001	-7.665	7.797	

	予測最	長構成			実測最良構成	Ì	
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	4,1,0,0,0,0	6.83e-004	5.75e-004	3,1,0,0,0,0	5.62e-004	0.216	0.022
48	4,1,0,0,0,0	1.77e-003	1.24e-003	4,1,0,0,0,0	1.24e-003	0.425	0.000
64	4,1,0,0,0,0	3.57e-003	2.60e-003	4,1,0,0,0,0	2.60e-003	0.372	0.000
80	4,1,0,0,0,0	6.23e-003	4.93e-003	4,1,0,0,0,0	4.93e-003	0.264	0.000
96	4,1,0,0,0,0	9.90e-003	9.00e-003	4,1,0,0,0,0	9.00e-003	0.101	0.000
112	4,1,0,0,0,0	1.48e-002	1.48e-002	4,1,0,0,0,0	1.48e-002	0.000	0.000
128	4,1,0,0,0,0	2.09e-002	2.09e-002	4,1,0,0,0,0	2.09e-002	0.004	0.000
160	4,1,0,0,0,0	3.79e-002	3.86e-002	4,1,0,0,0,0	3.86e-002	-0.017	0.000
192	4,1,0,0,0,0	6.21e-002	6.55e-002	4,1,0,0,0,0	6.55e-002	-0.052	0.000
224	4,1,0,0,0,0	9.48e-002	9.94e-002	4,1,0,0,0,0	9.94e-002	-0.047	0.000
256	4,1,0,0,0,0	1.37e-001	1.45e-001	4,1,0,0,0,0	1.45e-001	-0.057	0.000

表 84 Himeno BMT の予測結果, homo, nnls

表 85 Himeno BMT の予測結果, hetero1, nnls

	予測最	長構成			実測最良構成	t	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	4,1,0,0,0,0	6.83e-004	5.75e-004	3,1,0,0,0,0	5.62e-004	0.216	0.022
48	4,1,0,0,0,0	1.77e-003	1.24e-003	4,1,0,0,0,0	1.24e-003	0.425	0.000
64	4,1,0,0,0,0	3.57e-003	2.60e-003	4,1,0,0,0,0	2.60e-003	0.372	0.000
80	4,1,0,0,0,0	6.23e-003	4.93e-003	4,1,0,0,0,0	4.93e-003	0.264	0.000
96	4,1,0,0,0,0	9.90e-003	9.00e-003	4,1,0,0,0,0	9.00e-003	0.101	0.000
112	4,1,0,0,0,0	1.48e-002	1.48e-002	4,1,0,0,0,0	1.48e-002	0.000	0.000
128	4,1,0,0,0,0	2.09e-002	2.09e-002	4,1,0,0,0,0	2.09e-002	0.004	0.000
160	4,1,0,0,0,0	3.79e-002	3.86e-002	4,1,0,0,0,0	3.86e-002	-0.017	0.000
192	4,1,0,0,0,0	6.21e-002	6.55e-002	4,1,0,0,0,0	6.55e-002	-0.052	0.000
224	4,1,0,0,0,0	9.48e-002	9.94e-002	4,1,0,0,0,0	9.94e-002	-0.047	0.000
256	4,1,0,0,0,0	1.37e-001	1.45e-001	4,1,0,0,0,0	1.45e-001	-0.057	0.000

表 86 Himeno BMT の予測結果, hetero2, nnls

	予測量	長構成			実測最良構成	t	
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	4,1,4,1,0,0	5.90e-004	7.11e-004	3,1,0,0,0,0	5.62e-004	0.050	0.264
48	4,1,4,1,0,0	1.72e-003	1.90e-003	4,1,0,0,0,0	1.24e-003	0.381	0.531
64	4,1,0,0,0,0	3.57e-003	2.60e-003	4,1,0,0,0,0	2.60e-003	0.372	0.000
80	4,1,0,0,0,0	6.23e-003	4.93e-003	4,1,0,0,0,0	4.93e-003	0.264	0.000
96	4,1,0,0,0,0	9.90e-003	9.00e-003	4,1,0,0,0,0	9.00e-003	0.101	0.000
112	4,1,0,0,0,0	1.48e-002	1.48e-002	4,1,0,0,0,0	1.48e-002	0.000	0.000
128	4,1,0,0,0,0	2.09e-002	2.09e-002	4,1,0,0,0,0	2.09e-002	0.004	0.000
160	4,1,0,0,0,0	3.79e-002	3.86e-002	4,1,0,0,0,0	3.86e-002	-0.017	0.000
192	4,1,0,0,0,0	6.21e-002	6.55e-002	4,1,0,0,0,0	6.55e-002	-0.052	0.000
224	4,1,0,0,0,0	9.48e-002	9.94e-002	4,1,0,0,0,0	9.94e-002	-0.047	0.000
256	4,1,0,0,0,0	1.37e-001	1.45e-001	4,1,0,0,0,0	1.45e-001	-0.057	0.000

-	予測最	最構成		実測最良構成			
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{\tau}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
32	0,0,4,1,4,1	3.53e-004	9.04e-004	3,1,0,0,0,0	5.62e-004	-0.372	0.609
48	0,0,4,1,4,1	1.19e-003	2.13e-003	4,1,0,0,0,0	1.24e-003	-0.042	0.714
64	4, 1, 4, 1, 4, 1	2.46e-003	3.26e-003	4,1,0,0,0,0	2.60e-003	-0.055	0.254
80	4, 1, 4, 1, 4, 1	4.05e-003	5.77e-003	4,1,0,0,0,0	4.93e-003	-0.177	0.172
96	4, 1, 4, 1, 4, 1	6.35e-003	1.05e-002	4,1,0,0,0,0	9.00e-003	-0.294	0.170
112	4, 1, 4, 1, 4, 1	1.01e-002	1.81e-002	4,1,0,0,0,0	1.48e-002	-0.316	0.224
128	4, 1, 4, 1, 4, 1	1.51e-002	3.93e-002	4,1,0,0,0,0	2.09e-002	-0.278	0.881
160	4, 1, 4, 1, 4, 1	2.94e-002	6.10e-002	4,1,0,0,0,0	3.86e-002	-0.238	0.581
192	4, 1, 4, 1, 4, 1	5.08e-002	7.12e-002	4,1,0,0,0,0	6.55e-002	-0.224	0.087
224	4, 1, 4, 1, 4, 1	8.07e-002	1.23e-001	4,1,0,0,0,0	9.94e-002	-0.188	0.237
256	4,1,4,1,4,1	1.20e-001	1.52e-001	4,1,0,0,0,0	1.45e-001	-0.172	0.042

表 87 Himeno BMT の予測結果, hetero3, nnls

表 88 Himeno BMT の相関係数

	13	oo miniei	10 DM1 07		
N	homo ls	homo nnls	hetero1 nnls	hetero2 nnls	hetero3 nnls
32	-0.048703359	0.788376500	0.778089012	0.620968442	0.715820794
48	-0.066839230	0.497224629	0.683150667	0.309520994	0.820032149
64	-0.206262471	0.405252346	0.437024329	0.446571262	0.839584299
80	-0.395632357	0.612234146	0.703243788	0.797988209	0.811951473
96	-0.051053683	0.589512253	0.550223485	0.753662069	0.827165569
112	-0.544147545	0.849799791	0.866778773	0.858880987	0.596485742
128	-0.205626910	0.343573119	0.328765258	0.295438892	0.409307979
160	0.290519635	0.846028608	0.861423954	0.864293374	0.216250930
192	0.837447022	0.861354558	0.863273050	0.857508580	0.229751650
224	-0.406887364	0.851200268	0.859839834	0.882879756	0.334800729
256	-0.469086427	0.957011523	0.959239714	0.955062656	0.503002163

表89 Himeno BMTのNP-Tモデルの係数, homo, ls

	k_0	k_1	k_2	k_3
$M_1 = 1$	2.992439e-008	-1.783459e-006	1.091179e-004	-1.295105e-003
$M_1 = 2$	-1.796112e-007	6.641648e-005	-6.703682e-003	7.610339e-002
$M_2 = 1$	1.151028e-007	-8.698711e-006	4.313552e-004	3.964167e-002
$M_2 = 2$	-3.548960e-006	1.070136e-003	-9.416958e-002	-2.603921e+000
$M_3 = 1$	1.599624e-007	-2.564434e-005	2.063538e-003	-1.799935e-001
	k_4	k_5	k_6	k_7
$M_1 = 1$	k_4 8.907624e-007	k_5 -4.857279e-005	k_6 3.787520e-004	k_7 2.236442e-004
$M_1 = 1$ $M_1 = 2$	$\frac{k_4}{8.907624\text{e-}007}$ 3.201309e-006	k_5 -4.857279e-005 -1.416821e-006	$\frac{k_6}{3.787520e-004}$ 4.904158e-002	$\frac{k_7}{2.236442\text{e-}004}$ -2.080049e-002
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$	$\begin{array}{c} k_4 \\ \hline 8.907624 \text{e-}007 \\ \hline 3.201309 \text{e-}006 \\ \hline 2.321380 \text{e-}007 \end{array}$	$\begin{array}{c} k_5 \\ -4.857279e005 \\ -1.416821e006 \\ 9.509230e005 \end{array}$	$\begin{array}{c} k_6 \\ \hline 3.787520e-004 \\ 4.904158e-002 \\ -3.842245e-002 \end{array}$	$\begin{array}{c} k_7 \\ \hline 2.236442 \text{e-} 004 \\ -2.080049 \text{e-} 002 \\ 1.706151 \text{e-} 002 \end{array}$
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$ $M_2 = 2$	$\begin{array}{r} k_4 \\ \hline 8.907624e-007 \\ 3.201309e-006 \\ \hline 2.321380e-007 \\ 4.246270e-005 \end{array}$	$\begin{array}{c} k_5 \\ -4.857279e\text{-}005 \\ -1.416821e\text{-}006 \\ 9.509230e\text{-}005 \\ -4.010437e\text{-}003 \end{array}$	$\begin{array}{c} k_6 \\ \hline 3.787520e{-}004 \\ 4.904158e{-}002 \\ -3.842245e{-}002 \\ 2.569903e{+}000 \end{array}$	$\begin{array}{r} k_7 \\ \hline 2.236442e{-}004 \\ -2.080049e{-}002 \\ 1.706151e{-}002 \\ -9.127054e{-}001 \end{array}$

	111110100010			<u> momo i mme</u>
	k_0	k_1	k_2	k_3
$M_1 = 1$	2.544631e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_1 = 2$	2.535194e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 1$	8.271732e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	5.422107e-010	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	8.393556e-008	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_1 = 1$	4.638296e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_1 = 2$	2.490469e-006	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 1$	3.655948e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	1.748047e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	7.102326e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_{1} = 1$ $M_{1} = 2$ $M_{2} = 1$ $M_{2} = 2$ $M_{3} = 1$ $M_{1} = 1$ $M_{1} = 2$ $M_{2} = 1$ $M_{2} = 2$ $M_{3} = 1$	$\begin{array}{c} 2.534051e{-}008\\ 2.535194e{-}008\\ 8.271732e{-}008\\ 5.422107e{-}010\\ 8.393556e{-}008\\ \hline \\ k_4\\ 4.638296e{-}007\\ 2.490469e{-}006\\ 3.655948e{-}007\\ 1.748047e{-}005\\ 7.102326e{-}007\\ \end{array}$	$\begin{array}{c} 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ \hline k_5\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ \hline \end{array}$	$\begin{array}{c} 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ \hline k_6\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ \hline \end{array}$	$\begin{array}{c} 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ \hline k_7\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ 0.000000e+000\\ \hline \end{array}$

<u>表 90 Himeno BMT の NP-T モデルの係数,homo,nnk</u>

表91 Himeno BMTのNP-Tモデルの係数, hetero1, nnls

	k_0	k_1	k_2	k_3
$M_2 = 1$	8.238033e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	2.091981e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	8.416770e-008	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	k_4 3.982195e-007	k_5 0.000000e+000	$\frac{k_6}{0.000000e+000}$	k_7 0.000000e+000
$M_2 = 1$ $M_2 = 2$	$\frac{k_4}{3.982195\text{e-}007}$ 8.865132e-006	$\begin{array}{c} k_5 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_6 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\begin{array}{c} k_7 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$

表92 Himeno BMTのNP-Tモデルの係数, hetero2, nnls

	κ_0	k_1	κ_2	k_3
$M_2 = 1$	8.440403e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	2.854730e-007	1.788423e-005	0.000000e+000	0.000000e+000
$M_3 = 1$	8.542011e-008	0.000000e+000	0.000000e+000	0.000000e+000
	,	,	1	1
	κ_4	k_5	k_6	k_7
$M_2 = 1$	$\frac{\kappa_4}{2.388405\text{e-}007}$	k_5 0.000000e+000	k_6 0.000000e+000	k_7 0.000000e+000
$M_2 = 1$ $M_2 = 2$		$\frac{k_5}{0.000000e+000}$ 0.000000e+000	$\frac{k_6}{0.000000e+000}$ 0.000000e+000	$\frac{k_7}{0.000000e+000}$ 0.000000e+000

表93 Himeno BMTのNP-Tモデルの係数, hetero3, nnls

	κ_0	k_1	κ_2	k_3
$M_2 = 1$	8.584634e-008	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	2.470725e-007	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	8.615733e-008	0.000000e+000	0.000000e+000	0.000000e+000
	k_4	k_5	k_6	k_7
$M_2 = 1$	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 2$	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	0.000000e+000	0.000000e + 000	0.000000e+000	0.000000e+000

	予測最良	構成			ミ測最良構	成	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
60	4,1,4,1,4,1	-20.72	1.22	4,1,0,0,0,0	0.38	-55.049	2.191
120	4, 1, 4, 1, 4, 1	-19.29	2.97	4,1,0,0,0,0	2.74	-8.031	0.082
180	4, 1, 4, 1, 4, 1	-17.31	8.36	4,2,3,1,4,1	7.51	-3.304	0.114
240	4, 1, 4, 1, 4, 1	-14.15	18.60	4,2,4,1,4,1	14.81	-1.955	0.256
300	4, 1, 4, 1, 4, 1	-9.22	35.04	4,2,4,1,3,1	28.79	-1.320	0.217
360	4, 1, 4, 1, 4, 1	7.22	59.66	4,2,3,1,4,1	48.40	-0.851	0.233
420	4, 1, 4, 1, 4, 1	31.69	92.70	4,2,4,1,3,1	75.78	-0.582	0.223
480	4, 1, 4, 1, 4, 1	65.13	136.30	4, 2, 4, 1, 4, 1	105.19	-0.381	0.296
510	2, 1, 4, 1, 4, 1	127.46	198.30	4,2,3,1,4,1	132.94	-0.041	0.492
540	4, 1, 4, 1, 4, 1	109.14	186.21	4,2,4,1,3,1	156.97	-0.305	0.186
570	2, 1, 4, 1, 4, 1	190.89	274.04	4,2,4,1,3,1	183.40	0.041	0.494
600	4,1,4,1,4,1	165.33	254.88	4,2,4,1,3,1	213.31	-0.225	0.195

表94 hpcmw-solver-test の予測結果,homo,ls

<u>表95 hpcmw-solver-test の予測結果, homo, nnls</u>

	予測最良	構成		Ę	ミ測最良構	成	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
60	4,1,0,0,0,0	0.34	0.38	4,1,0,0,0,0	0.38	-0.124	0.000
120	4, 1, 4, 1, 4, 1	2.18	2.97	4,1,0,0,0,0	2.74	-0.205	0.082
180	4, 1, 4, 1, 4, 1	7.13	8.36	4,2,3,1,4,1	7.51	-0.051	0.114
240	4,2,4,1,4,1	15.88	14.81	4,2,4,1,4,1	14.81	0.072	0.000
300	4,2,4,1,3,1	29.82	28.79	4,2,4,1,3,1	28.79	0.036	0.000
360	4,2,4,1,3,1	48.70	48.59	4,2,3,1,4,1	48.40	0.006	0.004
420	4,2,4,1,3,1	74.13	75.78	4,2,4,1,3,1	75.78	-0.022	0.000
480	4, 2, 4, 1, 4, 1	101.95	105.19	4,2,4,1,4,1	105.19	-0.031	0.000
510	4,2,4,1,3,1	127.98	133.10	4,2,3,1,4,1	132.94	-0.037	0.001
540	4,2,4,1,3,1	151.91	156.97	4,2,4,1,3,1	156.97	-0.032	0.000
570	4,2,4,1,3,1	178.65	183.40	4,2,4,1,3,1	183.40	-0.026	0.000
600	4,2,4,1,3,1	208.35	213.31	4,2,4,1,3,1	213.31	-0.023	0.000

表96 hpcmw-solver-test の予測結果, hetero1, nnls 予測最良構成 実測最良構成 $\hat{\tau}$ \hat{T} N $P_1,\,M_1,\,P_2,\,M_2,\,P_3,\,M_3$ τ $P_1,\,M_1,\,P_2,\,M_2,\,P_3,\,M_3$ $(\tau - \hat{T})/\hat{T}$ $(\hat{\tau} - \hat{T})/\hat{T}$ 60 4,1,0,0,0,0 0.340.38 4,1,0,0,0,0 0.38-0.124 0.0001204, 1, 4, 1, 4, 12.162.974,1,0,0,0,0 2.74-0.2110.0824, 1, 4, 1, 4, 17.11 $4,\!2,\!3,\!1,\!4,\!1$ 7.51-0.0531808.360.1142404, 2, 4, 1, 4, 115.8814.81 $4,\!2,\!4,\!1,\!4,\!1$ 14.810.0720.000300 4, 2, 4, 1, 3, 129.8228.794, 2, 4, 1, 3, 128.790.0360.0004,2,4,1,3,1 48.7048.594,2,3,1,4,1 48.400.006 0.004360 4,2,4,1,3,1 4,2,4,1,3,1 420 74.1375.7875.78-0.022 0.0004, 2, 4, 1, 4, 1101.95 4, 2, 4, 1, 4, 1105.19 -0.031 480105.190.000128.04132.944, 2, 4, 1, 3, 14,2,3,1,4,1510133.10-0.0370.0015404, 2, 4, 1, 3, 1151.98156.974, 2, 4, 1, 3, 1156.97-0.032 0.0005704, 2, 4, 1, 3, 1178.73183.40 4, 2, 4, 1, 3, 1183.40 -0.025 0.000 600 4, 2, 4, 1, 3, 1208.45213.314, 2, 4, 1, 3, 1213.31-0.023 0.000

	1、91 予測最良	<u>)CIIIW-S</u> 構成	orver-te	<u>56 V2 J7川和木,II</u> 算	<u>eteroz</u> E測最良構	, <u>111115</u> 成	
Ν	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
60	4,1,0,0,0,0	0.34	0.38	4,1,0,0,0,0	0.38	-0.124	0.000
120	4,1,4,1,4,1	2.20	2.97	4,1,0,0,0,0	2.74	-0.197	0.082
180	4,1,4,1,4,1	7.16	8.36	4,2,3,1,4,1	7.51	-0.047	0.114
240	4,2,4,1,4,1	15.88	14.81	4,2,4,1,4,1	14.81	0.072	0.000
300	4,2,4,1,3,1	29.82	28.79	4,2,4,1,3,1	28.79	0.036	0.000
360	4,2,4,1,3,1	48.70	48.59	4,2,3,1,4,1	48.40	0.006	0.004
420	4,2,4,1,3,1	74.13	75.78	4,2,4,1,3,1	75.78	-0.022	0.000
480	4,2,4,1,4,1	101.95	105.19	4,2,4,1,4,1	105.19	-0.031	0.000
510	4,2,4,1,3,1	128.12	133.10	4,2,3,1,4,1	132.94	-0.036	0.001
540	4,2,4,1,3,1	152.07	156.97	4,2,4,1,3,1	156.97	-0.031	0.000
570	4,2,4,1,3,1	178.83	183.40	4,2,4,1,3,1	183.40	-0.025	0.000
600	4,2,4,1,3,1	208.56	213.31	4,2,4,1,3,1	213.31	-0.022	0.000

表97 hpcmw-solver-test の予測結果, hetero2, nnls

表 98 hpcmw-solver-test の予測結果, hetero3, nnls

	予測最良	構成		5	ミ測最良構	成	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
60	4,1,4,1,4,1	0.33	1.22	4,1,0,0,0,0	0.38	-0.152	2.191
120	4,1,4,1,4,1	2.19	2.97	4,1,0,0,0,0	2.74	-0.203	0.082
180	4,1,4,1,4,1	7.14	8.36	4,2,3,1,4,1	7.51	-0.050	0.114
240	4,2,4,1,4,1	15.88	14.81	4, 2, 4, 1, 4, 1	14.81	0.072	0.000
300	4,2,4,1,3,1	29.82	28.79	4,2,4,1,3,1	28.79	0.036	0.000
360	4,2,4,1,3,1	48.70	48.59	4,2,3,1,4,1	48.40	0.006	0.004
420	4,2,4,1,3,1	74.13	75.78	4,2,4,1,3,1	75.78	-0.022	0.000
480	4,2,4,1,4,1	101.95	105.19	4, 2, 4, 1, 4, 1	105.19	-0.031	0.000
510	4,2,4,1,3,1	126.80	133.10	4,2,3,1,4,1	132.94	-0.046	0.001
540	4,2,4,1,3,1	150.46	156.97	4,2,4,1,3,1	156.97	-0.041	0.000
570	4,2,4,1,3,1	176.90	183.40	4,2,4,1,3,1	183.40	-0.035	0.000
600	4,2,4,1,3,1	206.27	213.31	4,2,4,1,3,1	213.31	-0.033	0.000

表99 hpcmw-solver-testの相関係数

N	homo ls	homo nnls	hetero1 nnls	hetero2 nnls	hetero3 nnls
60	0.399945219	0.077050653	0.103060815	0.058978152	0.142149822
120	0.117460338	0.898799551	0.846723436	0.907574345	0.850199927
180	0.338371153	0.915290822	0.907410028	0.960393377	0.949332209
240	0.286543553	0.863757829	0.944631463	0.939067221	0.907807608
300	0.663209717	0.946026038	0.940986204	0.938485044	0.946696460
360	0.537095958	0.964874327	0.956108004	0.953464077	0.965301587
420	0.735403956	0.948171552	0.950022252	0.950038521	0.944619015
480	0.581233396	0.951785095	0.951967182	0.952236916	0.949864342
510	0.795500628	0.931414921	0.938921672	0.936940049	0.924602267
540	0.694074537	0.949341013	0.956414256	0.954082780	0.943578820
570	0.778103745	0.836168006	0.851387218	0.844694318	0.827305074
600	0.778729362	0.961176748	0.968173932	0.964219820	0.958066160

	k_0	k_1	k_2	k_3
$M_1 = 1$	5.604445e-006	4.908541e-004	-1.261638e-001	-7.910894e + 001
$M_1 = 2$	1.548168e-005	-3.150174e-003	5.667505e-001	-7.151741e + 000
$M_2 = 1$	1.200560e-005	1.020536e-003	-2.459435e-001	-1.609336e + 002
$M_2 = 2$	3.164889e-005	-5.926961e-003	9.348951e-001	$1.173291e{+}002$
$M_3 = 1$	1.490668e-005	6.369332e-004	-2.103690e-001	-1.400770e+002
	k_4	k_5	k_6	k_7
$M_1 = 1$	-1.307017e-004	3.862528e-002	6.204829e + 001	-3.124295e+001
$M_1 = 2$	2.234274e-004	-3.883839e-002	-7.769030e+000	4.018031e+000
$M_2 = 1$	-2.449725e-004	6.725497 e-002	1.262024e + 002	-6.311959e + 001
$M_2 = 2$	7.474522e-005	5.039129e-002	-8.203710e+001	2.904688e + 001

表100 hpcmw-solver-testのNP-Tモデルの係数,homo,ls

表 101 hpcmw-solver-test の NP-T モデルの係数, homo, nnls

	κ_0	κ_1	κ_2	κ_3
$M_1 = 1$	5.781903e-006	2.600662e-005	0.000000e+000	0.000000e+000
$M_1 = 2$	1.111870e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_2 = 1$	1.247869e-005	4.430646e-005	0.000000e+000	0.000000e+000
$M_2 = 2$	2.227447e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.446331e-005	0.000000e+000	0.000000e+000	1.187449e + 000
	1.	1.	1.	1.
	κ_4	κ_5	κ_6	κ ₇
$M_1 = 1$	$\frac{\kappa_4}{0.000000e+000}$	$\frac{\kappa_5}{0.000000e+000}$	$\frac{\kappa_6}{0.000000e+000}$	$\frac{\kappa_7}{0.000000e+000}$
$M_1 = 1$ $M_1 = 2$	$ \frac{\kappa_4}{0.000000e+000} \\ 1.089199e-004 $	$\frac{\kappa_5}{0.000000e+000}$ 0.000000e+000	$ \frac{\kappa_6}{0.000000e+000} \\ 0.000000e+000 $	$ \frac{\kappa_7}{0.000000e+000} \\ 0.000000e+000 $
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$	$\frac{\kappa_4}{0.000000e+000}$ $1.089199e-004$ $0.000000e+000$	$\begin{array}{c} \kappa_5 \\ 0.000000 e{+}000 \\ 0.000000 e{+}000 \\ 0.000000 e{+}000 \end{array}$	$\begin{array}{c} \kappa_6 \\ 0.000000 e{+}000 \\ 0.000000 e{+}000 \\ 0.000000 e{+}000 \end{array}$	$\begin{array}{c} \kappa_7 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \\ \hline 0.000000e{+}000 \end{array}$
$M_1 = 1$ $M_1 = 2$ $M_2 = 1$ $M_2 = 2$	$\frac{\kappa_4}{0.000000e+000}$ $1.089199e-004$ $0.000000e+000$ $1.599228e-004$	$\begin{array}{c} \kappa_5 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \end{array}$	$\begin{array}{c} \kappa_6 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \\ 0.000000e+000 \end{array}$	$\frac{\kappa_7}{0.000000e+000}$ 0.000000e+000 0.000000e+000 3.364695e-001

表102 hpcmw-solver-testのNP-T モデルの係数, hetero1, nnls

	k_0	k_1	k_2	k_3
$M_2 = 1$	1.249361e-005	3.990554e-005	0.000000e+000	0.000000e+000
$M_2 = 2$	2.185553e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.447114e-005	0.000000e+000	0.000000e+000	9.570956e-001
	k_4	k_5	k_6	k_7
$M_2 = 1$	k_4 0.000000e+000	k_5 0.000000e+000	k_6 0.000000e+000	k_7 0.000000e+000
$M_2 = 1$ $M_2 = 2$	$\frac{k_4}{0.000000e+000}$ 1.997277e-004	$\begin{array}{c} k_5 \\ 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	$\frac{k_6}{0.000000e+000}$ 0.000000e+000	$\frac{k_7}{0.000000e+000}$ 0.000000e+000

	k_0	k_1	k_2	k_3
$M_2 = 1$	1.248072e-005	4.493250e-005	0.000000e+000	0.000000e+000
$M_2 = 2$	2.188128e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.447558e-005	0.000000e+000	4.188306e-004	1.365654e + 000
	k_4	k_5	k_6	k_7
$M_2 = 1$	k_4 0.000000e+000	k_5 0.000000e+000	k_6 0.000000e+000	k_7 0.000000e+000
$M_2 = 1$ $M_2 = 2$	$\frac{k_4}{0.000000e+000}$ 1.586958e-004	$\frac{k_5}{0.000000e+000}$ 1.684756e-002	$\frac{k_6}{0.000000e+000}$ 0.000000e+000	$\frac{k_7}{0.000000e+000}$ 0.000000e+000

表103 hpcmw-solver-testのNP-Tモデルの係数, hetero2, nnls

表104 hpcmw-solver-testのNP-Tモデルの係数, hetero3, nnls

	k_0	k_1	k_2	k_3
$M_2 = 1$	1.244328e-005	3.922006e-005	0.000000e+000	0.000000e+000
$M_2 = 2$	2.244146e-005	0.000000e+000	0.000000e+000	0.000000e+000
$M_3 = 1$	1.428986e-005	0.000000e+000	1.240809e-002	6.997439e-002
	,		-	
	k_4	k_5	k_6	k_7
$M_2 = 1$	k_4 0.000000e+000	k_5 0.000000e+000	$\frac{k_6}{0.000000e+000}$	$\frac{k_7}{0.000000e+000}$
$M_2 = 1$ $M_2 = 2$			$\begin{array}{c} k_6 \\ \hline 0.000000e{+}000 \\ 0.000000e{+}000 \end{array}$	

表105 FFTEの予測結果, homo, ls

	予測	最良構成			実測最良構成	Ì	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	0,0,8,1,8,1	-4.12e-002	2.50e-003	1,1,0,0,0,0	3.63e-004	-114.480	5.884
2^{13}	0,0,8,1,8,1	-4.06e-002	1.68e-003	$1,\!1,\!0,\!0,\!0,\!0$	7.41e-004	-55.811	1.262
2^{14}	0,0,8,1,8,1	-3.93e-002	2.09e-003	$1,\!1,\!0,\!0,\!0,\!0$	1.50e-003	-27.247	0.396
2^{15}	0,0,8,1,8,1	-3.67e-002	3.61e-003	8,1,0,0,0,0	2.91e-003	-13.591	0.240
2^{16}	0,0,8,1,8,1	-3.11e-002	6.23e-003	7, 1, 7, 1, 2, 1	5.34e-003	-6.819	0.168
2^{17}	0,0,8,1,8,1	-1.90e-002	1.64e-002	7, 1, 5, 1, 4, 1	1.09e-002	-2.751	0.506
2^{18}	8,1,8,1,0,0	3.87e-003	3.00e-002	$8,\!2,\!8,\!2,\!0,\!0$	2.05e-002	-0.811	0.462
2^{19}	8,1,8,1,0,0	5.15e-002	8.55e-002	$8,\!2,\!7,\!2,\!2,\!1$	4.75e-002	0.083	0.798
2^{20}	8,1,0,0,0,0	1.41e-001	1.30e-001	$8,\!1,\!0,\!0,\!8,\!1$	1.21e-001	0.169	0.082
2^{21}	0,0,2,2,0,0	-4.34e-001	1.34e + 000	$8,\!1,\!0,\!0,\!8,\!1$	2.45e-001	-2.770	4.460
2^{22}	0,0,2,2,0,0	-4.21e+000	2.97e + 000	$8,\!1,\!0,\!0,\!8,\!1$	4.93e-001	-9.542	5.030
2^{23}	0,0,4,2,0,0	-6.05e+000	4.98e + 000	8,1,0,0,8,1	9.89e-001	-7.110	4.029

	予測	最良構成			実測最良構成	t	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	8,1,0,0,0,0	5.18e-004	9.46e-004	1,1,0,0,0,0	3.63e-004	0.426	1.606
2^{13}	8,1,0,0,0,0	1.05e-003	1.40e-003	$1,\!1,\!0,\!0,\!0,\!0$	7.41e-004	0.412	0.888
2^{14}	8,1,0,0,0,0	2.11e-003	1.84e-003	$1,\!1,\!0,\!0,\!0,\!0$	1.50e-003	0.410	0.229
2^{15}	8,1,0,0,0,0	4.27e-003	2.91e-003	8,1,0,0,0,0	2.91e-003	0.467	0.000
2^{16}	8,1,0,0,0,0	8.63e-003	6.51e-003	7, 1, 7, 1, 2, 1	5.34e-003	0.616	0.220
2^{17}	8,1,0,0,0,0	1.74e-002	2.05e-002	7, 1, 5, 1, 4, 1	1.09e-002	0.603	0.886
2^{18}	8,1,0,0,0,0	3.52e-002	2.92e-002	8,2,8,2,0,0	2.05e-002	0.717	0.424
2^{19}	8,1,0,0,0,0	7.11e-002	6.55e-002	$8,\!2,\!7,\!2,\!2,\!1$	4.75e-002	0.495	0.378
2^{20}	8,1,0,0,0,0	1.44e-001	1.30e-001	$8,\!1,\!0,\!0,\!8,\!1$	1.21e-001	0.190	0.082
2^{21}	8,1,0,0,0,0	2.90e-001	2.62e-001	$8,\!1,\!0,\!0,\!8,\!1$	2.45e-001	0.181	0.067
2^{22}	8,1,0,0,0,0	5.85e-001	5.34e-001	$8,\!1,\!0,\!0,\!8,\!1$	4.93e-001	0.188	0.083
2^{23}	$8,\!1,\!0,\!0,\!0,\!0$	1.18e+000	1.11e+000	$8,\!1,\!0,\!0,\!8,\!1$	9.89e-001	0.194	0.118

表 106 FFTE の予測結果, homo, nnls

表 107 FFTE の予測結果, hetero1, nnls

	予測	最良構成			実測最良構成	ţ	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	8,1,0,0,0,0	5.18e-004	9.46e-004	1,1,0,0,0,0	3.63e-004	0.426	1.606
2^{13}	8,1,0,0,0,0	1.05e-003	1.40e-003	$1,\!1,\!0,\!0,\!0,\!0$	7.41e-004	0.412	0.888
2^{14}	8,1,0,0,0,0	2.11e-003	1.84e-003	$1,\!1,\!0,\!0,\!0,\!0$	1.50e-003	0.410	0.229
2^{15}	8,1,0,0,0,0	4.27e-003	2.91e-003	$8,\!1,\!0,\!0,\!0,\!0$	2.91e-003	0.467	0.000
2^{16}	8,1,0,0,0,0	8.63e-003	6.51e-003	7, 1, 7, 1, 2, 1	5.34e-003	0.616	0.220
2^{17}	8,1,0,0,0,0	1.74e-002	2.05e-002	7, 1, 5, 1, 4, 1	1.09e-002	0.603	0.886
2^{18}	8,1,0,0,0,0	3.52e-002	2.92e-002	$8,\!2,\!8,\!2,\!0,\!0$	2.05e-002	0.717	0.424
2^{19}	8,1,0,0,0,0	7.11e-002	6.55e-002	$8,\!2,\!7,\!2,\!2,\!1$	4.75e-002	0.495	0.378
2^{20}	8,1,0,0,0,0	1.44e-001	1.30e-001	$8,\!1,\!0,\!0,\!8,\!1$	1.21e-001	0.190	0.082
2^{21}	8,1,0,0,0,0	2.90e-001	2.62e-001	$8,\!1,\!0,\!0,\!8,\!1$	2.45e-001	0.181	0.067
2^{22}	8,1,0,0,0,0	5.85e-001	5.34e-001	$8,\!1,\!0,\!0,\!8,\!1$	4.93e-001	0.188	0.083
2^{23}	8,1,0,0,0,0	1.18e+000	1.11e+000	8,1,0,0,8,1	9.89e-001	0.194	0.118

表108 FFTEの予測結果, hetero4, nnls

	予測	最良構成			実測最良構成	į	
N	$P_1, M_1, P_2, M_2, P_3, M_3$	τ	$\hat{\tau}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	8,1,0,0,0,0	5.18e-004	9.46e-004	1,1,0,0,0,0	3.63e-004	0.426	1.606
2^{13}	8,1,0,0,0,0	1.05e-003	1.40e-003	$1,\!1,\!0,\!0,\!0,\!0$	7.41e-004	0.412	0.888
2^{14}	8,1,0,0,0,0	2.11e-003	1.84e-003	$1,\!1,\!0,\!0,\!0,\!0$	1.50e-003	0.410	0.229
2^{15}	8,1,0,0,0,0	4.27e-003	2.91e-003	$8,\!1,\!0,\!0,\!0,\!0$	2.91e-003	0.467	0.000
2^{16}	8,1,0,0,0,0	8.63e-003	6.51e-003	7, 1, 7, 1, 2, 1	5.34e-003	0.616	0.220
2^{17}	8,1,0,0,0,0	1.74e-002	2.05e-002	7, 1, 5, 1, 4, 1	1.09e-002	0.603	0.886
2^{18}	8,1,0,0,0,0	3.52e-002	2.92e-002	$8,\!2,\!8,\!2,\!0,\!0$	2.05e-002	0.717	0.424
2^{19}	8,1,0,0,0,0	7.11e-002	6.55e-002	$8,\!2,\!7,\!2,\!2,\!1$	4.75e-002	0.495	0.378
2^{20}	8,1,0,0,0,0	1.44e-001	1.30e-001	$8,\!1,\!0,\!0,\!8,\!1$	1.21e-001	0.190	0.082
2^{21}	8,1,0,0,0,0	2.90e-001	2.62e-001	$8,\!1,\!0,\!0,\!8,\!1$	2.45e-001	0.181	0.067
2^{22}	8,1,0,0,0,0	5.85e-001	5.34e-001	$8,\!1,\!0,\!0,\!8,\!1$	4.93e-001	0.188	0.083
2^{23}	8,1,0,0,0,0	1.18e + 000	1.11e+000	$8,\!1,\!0,\!0,\!8,\!1$	9.89e-001	0.194	0.118

	予測最良構成			実測最良構成			
N	$P_1, M_1, P_2, M_2, P_3, M_3$	au	$\hat{ au}$	$P_1, M_1, P_2, M_2, P_3, M_3$	\hat{T}	$(\tau - \hat{T})/\hat{T}$	$(\hat{\tau} - \hat{T})/\hat{T}$
2^{12}	8,1,0,0,0,0	5.18e-004	9.46e-004	1,1,0,0,0,0	3.63e-004	0.426	1.606
2^{13}	8,1,0,0,0,0	1.05e-003	1.40e-003	$1,\!1,\!0,\!0,\!0,\!0$	7.41e-004	0.412	0.888
2^{14}	8,1,0,0,0,0	2.11e-003	1.84e-003	$1,\!1,\!0,\!0,\!0,\!0$	1.50e-003	0.410	0.229
2^{15}	8,1,0,0,0,0	4.27e-003	2.91e-003	$8,\!1,\!0,\!0,\!0,\!0$	2.91e-003	0.467	0.000
2^{16}	8,1,0,0,0,0	8.63e-003	6.51e-003	7, 1, 7, 1, 2, 1	5.34e-003	0.616	0.220
2^{17}	8,1,0,0,0,0	1.74e-002	2.05e-002	7, 1, 5, 1, 4, 1	1.09e-002	0.603	0.886
2^{18}	8,1,0,0,0,0	3.52e-002	2.92e-002	$8,\!2,\!8,\!2,\!0,\!0$	2.05e-002	0.717	0.424
2^{19}	8,1,0,0,0,0	7.11e-002	6.55e-002	$8,\!2,\!7,\!2,\!2,\!1$	4.75e-002	0.495	0.378
2^{20}	8,1,0,0,0,0	1.44e-001	1.30e-001	$8,\!1,\!0,\!0,\!8,\!1$	1.21e-001	0.190	0.082
2^{21}	8,1,0,0,0,0	2.90e-001	2.62e-001	$8,\!1,\!0,\!0,\!8,\!1$	2.45e-001	0.181	0.067
2^{22}	8,1,0,0,0,0	5.85e-001	5.34e-001	$8,\!1,\!0,\!0,\!8,\!1$	4.93e-001	0.188	0.083
2^{23}	8,1,0,0,0,0	1.18e + 000	1.11e+000	8,1,0,0,8,1	9.89e-001	0.194	0.118

表 109 FFTE の予測結果, hetero7, nnls

<u>表 110 FFTE の相関係数</u>

N	homo ls	homo nnls	hetero1 nnls	hetero4 nnls	hetero7 nnls					
2^{12}	-0.593733089	-0.647662149	-0.656680689	-0.752582872	-0.645923718					
2^{13}	0.551502776	0.744100533	0.740375177	0.691637962	0.719619428					
2^{14}	0.650986943	0.937859131	0.939982095	0.964769536	0.941536608					
2^{15}	0.719222742	0.881540457	0.885490800	0.927280011	0.914546188					
2^{16}	0.902132343	0.653325612	0.890970223	0.919865319	0.871763676					
2^{17}	0.963054219	0.895032126	0.898029213	0.930212070	0.882211705					
2^{18}	0.915990919	0.746410168	0.755184871	0.801618127	0.885106543					
2^{19}	0.919434677	0.402307435	0.927701829	0.929899291	0.915447763					
2^{20}	0.805498301	0.735829042	0.774559014	0.806028537	0.827619685					
2^{21}	0.194334662	0.618091936	0.609119071	0.634007244	0.613535931					
2^{22}	-0.068044931	0.467984249	0.504706111	0.458742656	0.459853107					
2^{23}	0.099355320	0.388529002	0.397905883	0.428475604	0.432740871					