
Diversity of Instruction Set Architecture
Graduate Adviser: Shuichi Ichikawa 043714 Takashi Sawada

1 Introduction

The attacks of viruses and worms are serious problems. Viruses often
exploit the buffer overflow vulnerabilities to inject a binary code that
alters the execution flow of a program (injection attack).

Though there are many preceding studies on protection against
injection attack, encryption of memory and verification of instruction
sequence incur significant performance overhead.

Another solution is diversification of processors. Kc et al. [1]
proposed two methods. One is to XOR a secret key to instruction
sequence and the other is to randomly transpose all the bits within
the instruction.

This study presents a new method to diversify instruction set ar-
chitecture by utilizing the redundancy in the instruction set. We eval-
uated redundancy of four ISAs and Kc’s methods. We implemented
our methods and Kc’s methods by FPGA (Field Programmable Gate
Array) chips.

2 Diversity of Instruction Set Architec-
ture

ISA includes definitions of instruction set and register sets. Instruc-
tions are defined by instruction formats that consist of various fields.
One of these fields is opcode that defines operation. Let us consider
a processor P1 that provides ADD instruction (opcode = 1) and SUB
instruction (opcode = 2). Here, we can also consider another pro-
cessor P2, which is a twin of processor P1 except that the respective
opcodes of ADD and SUB are 2 and 1 in P2. The difference of P1
and P2 is referred to as instruction set personality. It is possible
to diversify instruction set architecture by generating instruction set
personalities from the original ISA.

The number of personalities that is derivable from an ISA is re-
ferred to as redundancy of instruction set. Auxiliary fields for opcode
field are also usable to generate new personalities.

In the following evaluation, four ISAs are examined: MIPS a 32-
bit architecture, SH-3 a 16-bit architecture, Java VM and 8080 an
8-bit architecture.

The evaluation results of redundancy of each ISA are summarized
in Table 1. Java VM involves the largest redundancy, while SH-3
involves the smallest redundancy. A longer instruction format does
not necessarily lead to a larger redundancy. Rather, in this study,
larger diversity is obtained from architecture with simple instruction
formats. For example, the opcodes of Java VM are 1-byte long for
any kind of instructions, in which 201 instructions are defined. Con-
sequently, redundancy becomes very large; i.e., 201!≒ 10377

Kc [1] proposed to transpose all the bits randomly within a 32-bit
instruction. The redundancy of this method is 32!≒ 1035. Though
Kc’s methods and ours are both substitution ciphers, our method can
yield far larger diversity and is consequently more resistant to brute-
force attacks than Kc’s methods in any of the four architectures.

Table 1: Redundancy of four instruction sets
Number of Redundancy Information

instructions [bit]

MIPS 170 2.34e+166 553
SH-3 188 1.63e+90 300

Java VM 201 1.59e+377 1253
8080 111 2.34e+136 453

� �

�������	�

� ��� ��� ���
������� ��� �

������� ��� � ����� �

� � �

� � � ! " # #

$ % � � � & ' � $ (�%
)�*�+�$ �

)�,�+�$ �

)�*�+�$ �

) *�+�$ �

Fig. 1: Block diagram of Plasma

3 Implementation and Evaluation
Our method was implemented and evaluated with Xilinx Spartan3
FPGA technology. As a basis of the following discussion, a soft-
core processor Plasma [2], which is based on MIPS instruction set, is
adopted. The block diagram of Plasma is illustrated in Figure 1. The
following five designs are examined in this study. The Original de-
sign is the original Plasma design. Plasma consists of six functional
blocks: PC (program counter), IF (instruction fetch), ID (instruc-
tion decode), EX (execution), MA (memory access), and memory.
Proposed designs are designated as specialized design and RAM-
mapped design. The Specialized design implements the ID unit spe-
cialized for a processor personality. The RAM-mapped design im-
plements the mapping of opcodes by RAM, consequently enabling
changes of personality. The mapping RAM is located between the IF
and ID. The Bit-shuffle and XOR design are Kc’s methods. The Bit-
shuffle design includes a bit-shuffling block, which is simply inserted
between ID and IF blocks of the Original design. The XOR design
includes a bitwise XOR function with a 32-bit key register between
IF and ID blocks.

The evaluation results of implementation of each design are sum-
marized in Table 2. In table 2, Kc’s methods and ours show low per-
formance overheads, while our methods involve larger redundancy
than Kc’s methods.

Table 2: Evaluation results of five designs (optimization op-
tion: Speed)

Slice Block Frequency Synthesis
(SliceM) RAM [MHz] [s]

Original 1911 (128) 4 35.3 437
Specialized(Max) 2117 (130) 4 37.9 -
Specialized(Min) 1868 (128) 4 31.1 -
Specialized(Avg.) 2009 (128) 4 34.1 479

RAM-mapped 1979 (128) 4 31.2 461
Bit-shuffle 2139 (192) 4 33.2 522

XOR 1887 (128) 4 34.2 426

4 Conclusion
This paper presents a new method to diversify instruction set archi-
tecture by utilizing the redundancy in the instruction set. Our method
provides a large degree of freedom in instruction set. Thus, our
method is regarded more secure than Kc’s methods.

Kc’s methods and ours were implemented and evaluated with
FPGA technology. Our method is superior to Kc’s methods because
our methods have larger redundancy than Kc’s methods.

Our methods are substitution ciphers. Thus, attacker might ex-
ploit frequency analysis in a ciphertext-only attack. Therefore, it is
possible and desirable to adopt our method in combination with the
preceding methods for more security.

References
[1] G.S. Kc, A.D. Keromytis, V. Prevelakis: “Countering code-injection at-

tacks with instruction-set randomization,” Proc. CCS’03, pp. 272–280,
ACM (2003).

[2] S. Rhoads: “Plasma - most MIPS I (TM) opcodes: overview,” Nov. 2006.
http://www.opencores.org/projects.cgi/web/mips/.

