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Abstract

Title Implementation and Evaluation of High Level Synthesis of Processors with Special Instructions

Protection of intellectual property such as software is an important issue. Hardware Implementation of

functions is a method to protect it. Meanwhile, soft-processors, written in HDL (Hardware Description

Language), are widely used in embedded systems.

Skalicky et al. proposed a method to generate soft-processors from processor simulators using HLS (High

Level Synthesis). They reduced the resource usage of soft-processor by excluding unused instructions in the

target application. However, they did not use practical benchmarks for evaluation, nor compared the proposed

method with lightweight soft-processors of the same instruction set.

This study firstly re-examines Skalicky’s method. Then, I propose a method of implementing special

instructions into soft-processors which are generated using HLS.

I compared the resource usage of Skalicky’s soft-processor with that of Plasma, where Plasma is an open

source MIPS compatible soft-processor. In the case of a single benchmark, blowfish presented the smallest

resource usage. The number of slices was 40.4% smaller than Plasma. Meanwhile, aes presented the largest

resource usage. The number of slices was 21.2% larger than Plasma. Only aes presented more resource usage

than Plasma. In the case of multiple benchmarks, I evaluated with the combination in the smallest number

of instructions. In case of 4 benchmarks, 452 slices were used, which is smaller than Plasma. Skalicky’s

method is regarded effective with four or less applications.

In this study, special instructions are implemented from functions of C language. I moved some of the

functions of applications to the source code of soft-processor. In the case of call-by-value, the arguments

are passed according to MIPS specification. In the case of call-by-reference, the following three methods

are examined: (1) passing main memory’s address, (2) using SPM (Scratch Pad Memory), and (3) using

temporary variables. I implemented and evaluated special instructions in adpcm, aes, and motion. In ad-

pcm, I implemented 4 functions as special instructions, where all functions have no arguments passed by

reference. By implementing special instructions, the number of slices increased by 20.4% and the number

of execution cycles decreased by 31.7%. The product of the number of slices and the number of execution

cycles (AT-product) is 17.8% better (smaller) when implementing special instructions. In aes, I implmented

3 special instructions, where 2 functions have the arguments passed by reference. As a result, method (3) was

better than other methods in AT-product. However, it was 67.3% worse than the processor without special

instructions. In motion, I implemented one special instruction, which has the arguments passed by refer-

ence. Method (1) and method (2) couldn’t be implemented because type conversion failed. By implementing

special instruction, it was 78.0% better than the processor without special instructions in AT-product.


