Dept. Electrical and Electronic Information Engineering Toyohashi University of Technology

Custom Computing Systems Laboratory

March 2024 Shuichi Ichikawa, Prof. ichikawa@tut.jp

Prof. Shuichi Ichikawa

- Computer Architecture
 - Microprocessors, Parallel processors
- Custom computing
 - Embedded systems, Co-processing
- Reconfigurable Computing

 FPGA, Hardware partial evaluation
- High Performance Computing

 Parallel Processing, Load Balancing
 Parallel Processing, Load Balancing
 - Security

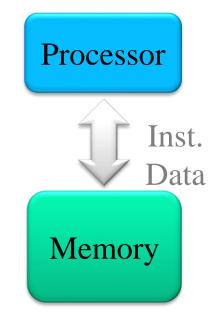
Methods

Applications

- Crypto-circuits, RNG, Secure system
- Information hiding, Digital signature

Spectrum

- Hardware
 - Reconfigurable computing systems
 - Application-specific accelerators
 - Embedded systems
 - Secure systems
- Software / Application
 - Parallel processing
 - High Performance Computing
 - Security of information and systems


Custom Computing System

- When the performance of software is unsatisfactory...
 - Accelerate it by hardware implementation
 - Very natural or commonplace
- There have been many implementations
 - Signal processing, Image processing
 - Symbolic computation, Database
 - Scientific computing
- Not always successful !!

Why hardware is faster than software?

- Software is executed by a processor (hardware)!
- Von-Neumann bottleneck
 - Instructions are executed sequentially
- Hardwired sequence control
 - No need to execute an instruction sequence
 - Conditional branches limits the performance
- Parallel execution of arithmetic
 - Physical parallelism (many units)
 - Temporal parallelism (pipelining)
- More memory bandwidth
 - Arbitrary number of memory banks
 - Dedicated wires between units
 - Dedicated memory units for operation

Merits of Custom Computing

(What are impossible with general purpose computers)

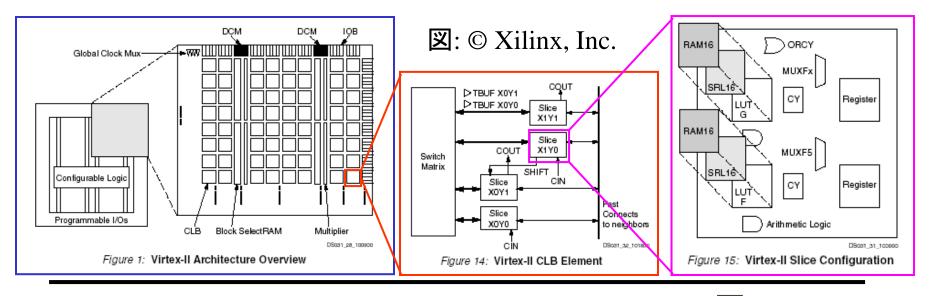
- Optimal arithmetic with optimal data type
 - There are pre-defined data types in general computing
 - 8-bit, 16-bit, 32-bit, 64-bit, IEEE single float, double float, ...
 - You can adopt arbitrary length of data in custom computing
 - Arbitrary expression of data (redundant form, etc.)
 - Reduction of logic scale → More parallelism, more performance
- Application-specific = fixed algorithm
 - Reduction of resources: Arithmetic, Memory, Wire
 - More parallelism
- More performance / cost

Problems of Custom Computing (What are drawbacks of its merits)

- High cost for design and implementation
 - You have to design and implement it by yourselves
 - Much effort and time are required for design, implementation, and debug.
 - One-off means expensive; no cost reduction by mass production
 - General purpose system is very easy and cheap to adopt
- Long period for development
 - General purpose hardware evolves very quickly
 - Its cost also decreases rapidly
 - Performance advantage is offset

Target of Custom Computing

- Custom computing system is `niche'
 - Its function is limited. Its cost is higher than PC.
 - It does not replace general purpose computers
 - It is used for a limited variations of applications, where the merits of custom computing pay for the drawbacks.
- Custom computing must realize something that cannot be done by a general-purpose system
 - Performance per energy consumption
 - Real-time systems, Embedded systems
 - Game, Virtual Reality, ...
- Add-in or Accelerator to a general system
 - Graphics board, GPU


Supports to Custom Computing

- FPGA (Field Programmable Gate Array)
 - Is replacing traditional ASICs
 - ASIC = Application Specific Integrated Circuits
 - Can implement various circuit by downloading configuration
 - Might be re-configured on-site
 - Is suitable to implement one-off LSI
 - General purpose, mass-produced part
 - Produced by a cutting-edge process technology
 - Reasonable performance at reasonable cost
- Rapid progress in CAD and PC technology
 - Enabled to design an FPGA chip in a modest time
 - Enabled to design a large system at a reasonable time and cost

Background: Field Programmable Gate Array (FPGA)

- Piles of RAMs and switches
- Suited for prototyping, one-off system for a specific application
- Logic can be reconfigured on-site

Past Project: Custom Hardware for Embedded and Control Applications

• Converts a PLC instruction sequence into logic circuit – Co-operation with Yashima Netsugaku Corp. in Toyohashi City.

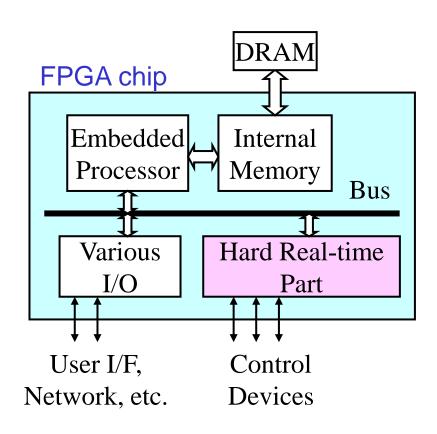
Perfect Layer Winder (prototype)

FPGA controller demo

Shuichi Ichikawa, Masanori Akinaka, Hisashi Hata, Ryo Ikeda, Hiroshi Yamamoto: "An FPGA implementation of hard-wired sequence control system based on PLC software," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 6, No. 4, pp. 367--375 (2011).

Background: control application

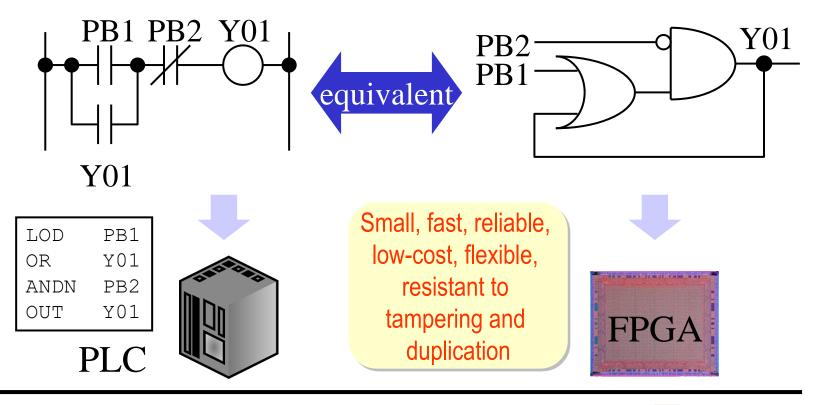
- PLC (Programmable Logic Controller)
 - A kind of computer
 - Used for various sequence control applications
- Problems
 - Performance
 - Not fast enough for large control systems
 - Intellectual property
 - PLC program is easy to duplicate and to analyze


 $https://commons.wikimedia.org/wiki/File:A_series_PLC.jpg$

Supposed System Configuration

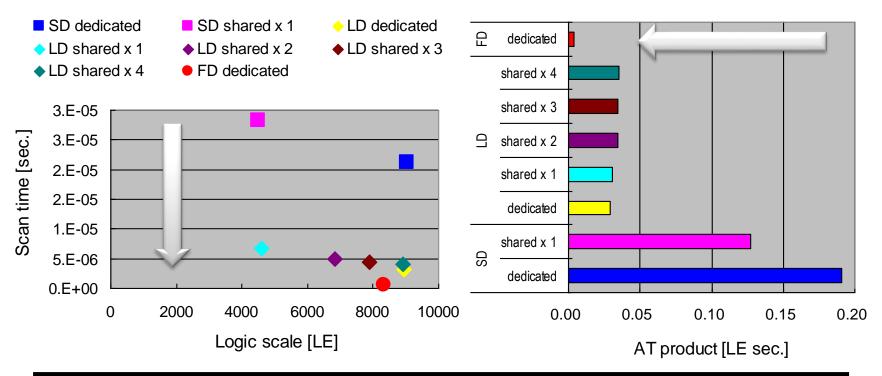
- "Legacy" systems are built with PLC
- Embedded processors are not fast enough
- Custom circuit is effective for hard realtime control
 - Automatic generation is desired
- Converting PLC program to hardware description

NOT for ALL systems



Naoki Fujieda, Shuichi Ichikawa, Yoshiki Ishigaki, Tasuku Tanaka: "Evaluation of the hardwired sequence control system generated by high-level synthesis," Proc. 26th IEEE International Symposium on Industrial Electronics (ISIE 2017), pp. 1261--1267 (2017).

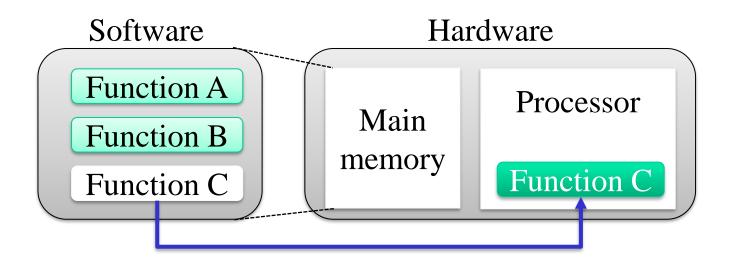
Goal


• To implement PLC programs with FPGA

Results

- Ladder program of productive industrial machinery
 - 165 instructions (incl. 6 add/sub, 12 multiplication, and 9 division)
- T_{PLC} : $T_{SD} = 76 : 1$, T_{PLC} : $T_{FD} = 3380 : 1$

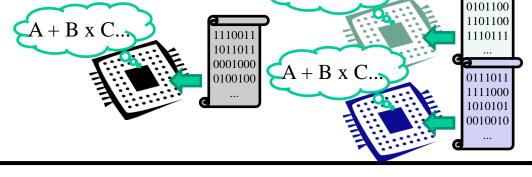
Shuichi Ichikawa, Masanori Akinaka, Ryo Ikeda, Hiroshi Yamamoto: "Converting PLC instruction sequence into logic circuit: A preliminary study," Proceedings of 2006 IEEE International Symposium on Industrial Electronics (ISIE '06), pp. 2930--2935 (2006).


State of the art

- Design methodology
 - Old: home-made converter (PLC inst. \rightarrow HDL)
 - Merits: fine control, good for evaluation
 - Problems: much effort, tool support
 - Now: C-based high-level synthesis
 - Merits: commercial support, co-design, integration
 - Problems: black box, difficult control
- Security
 - Obfuscation: Software, Hardware
 - Use of secure processor

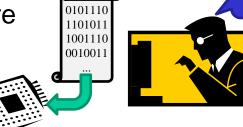
Processor specialization by highlevel synthesis (HLS)

- HLS generates logic circuit from software (e.g., C language)
- Transform some part of software into hardware of processor
 - Soft-processor is written in hardware description language; easy to use
 - Tamper resistance: hardware is more difficult to analyze
 - Processor can be customized on case-by-case basis



Kazuki Iwahara, Shuichi Ichikawa, Naoki Fujieda: "Evaluation of special instruction implementations in soft processors for high-level synthesis," IEEJ Transactions on Industry Applications, vol. 143, no. 2, pp. 94--100 (2023). (in Japanese)

Secure Processor


- Analysis, plagiarism, tampering of software
 - Leakage of trade secret, piracy of software
- Secure processor
 - Supports software protection by hardware
 - Example: encryption of memory image
- Diversification of processor
 - If each processor uses different instructions, ...
 - Much suitable for FPGA implementation

 $A + B \times C$

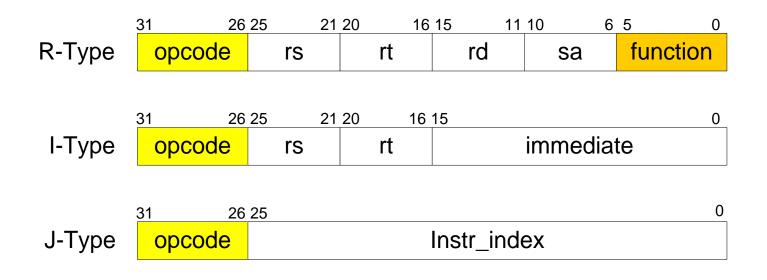
Different machine language for different processors

Set," IEICE 220 (2008). TOYOHAS UNIVERSITY OF TECHNO

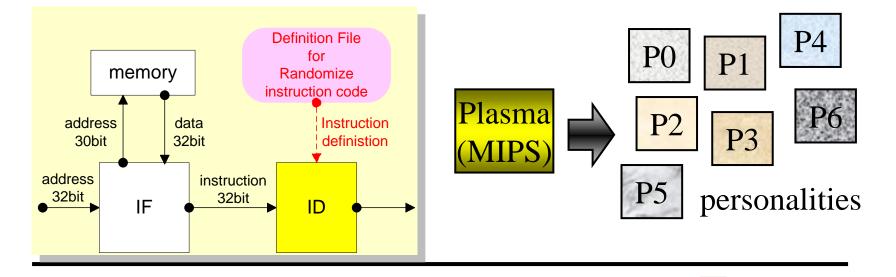
0010110

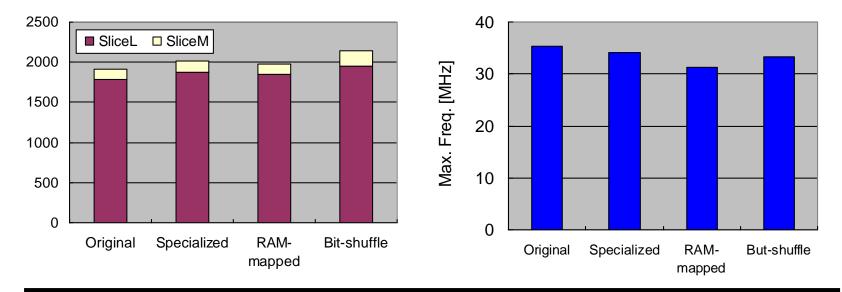
Shuichi Ichikawa, Takashi Sawada, Hisashi Hata: "Diversification of Processors Based on Redundancy in Instruction Set," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E91-A, No.1, pp. 211--220 (2008).

Instruction Set Randomization


- If each processor has its unique ISA
 - Binary software cannot be plagiarized.
 - Analysis of software would be difficult.
 - No unauthorized binary program
 - No injection attack (e.g., viruses)
- If each processor has its unique ISA
 - You have to design many processors
 - You have to prepare many tools
 - No portability of software

Example: MIPS ISA

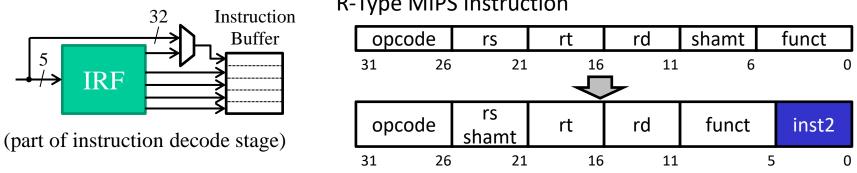

- Use the same instruction format with different encoding
 - R-type: ADD (op=0, funct=32), SUB (op=0, funct=34)
 - I-type: BEQ (op=4), BNE (op=5), LW (op=35), SW (op=43)
 - J-type: J (op=2), JAL (op=3)


Personalization of ISA

- Use unique encoding with the same format
 - Use a separate definition file
 - Build personalized ID units
- Economical implementation of randamization

Evaluation

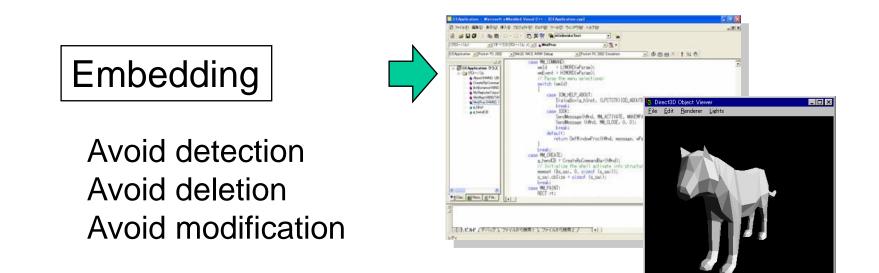
- Low overhead
 - Performance, Hardware resource
- High degree of freedom
 - Possible to generate enough number of products of different ISA.


Shuichi Ichikawa, Takashi Sawada, Hisashi Hata: "Diversification of Processors Based on Redundancy in Instruction Set," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E91-A, No.1, pp. 211--220 (2008).

Instruction Register File (IRF)

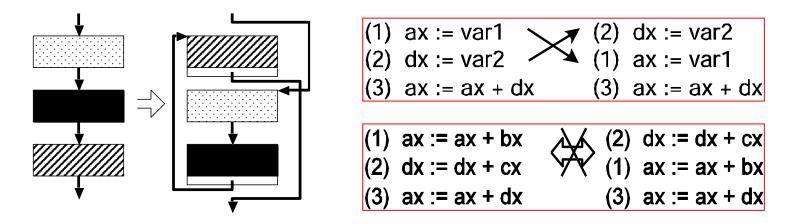
- Small instruction storage accessed by indices of fetched instructions
 - originally used for *instruction compression*
 - can be applied for software obfuscation if the content of the IRF is hidden^[2]

[2] D. Chang et al.: Program Differentiation, in INTERACT-14 in conjunction with ASPLOS-XV, No. 9 (2010).


R-Type MIPS Instruction

Naoki Fujieda, Tasuku Tanaka, Shuichi Ichikawa: "Design and Implementation of Instruction Indirection for Embedded Software Obfuscation," Microprocessors and Microsystems, Vol. 45, Part A, pp. 115--128 (2016).

Information hiding, Steganography


- Embed information into copyrighted materials
 - E.g., software, 3D models

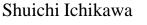
Freedom in Instruction Sequence

- How many expressions of a program exist?
- Freedom $f \rightarrow \text{Information } \log_2 f$ (bit)
 - Equivalent instructions: sub ($r \leftarrow r-1$), add ($r \leftarrow r+(-1)$)
 - The address of a basic block
 - The order of instructions in a basic block
 - The address of global variables
 - The allocation of registers to variables

Kazuhiro Hattanda, Shuichi Ichikawa: "The Evaluation of Davidson's Digital Signature Scheme," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E87-A, No. 1, pp. 224--225 (2004).

Random Number Generator (a key component for security)

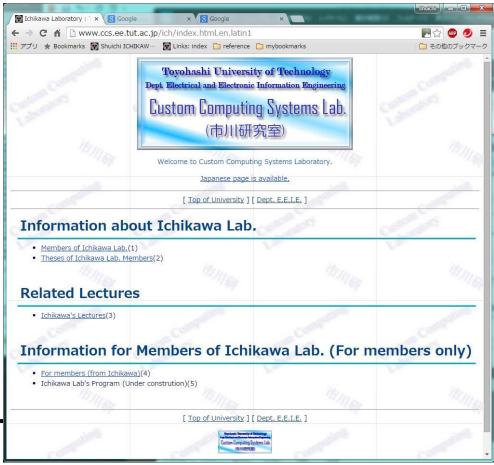
- Many application utilizes "random numbers"
 - Simulations, games, ...
- True Random Number Generator (TRNG)
 - TRN is generated from various *physical phenomena* → unpredictable
 - Thermal noise, metastability, jitter, ...
 - Dedicated *hardware* is essential.
- Pseudo-Random Number Generator (PRNG)
 - Generated by a pre-determined algorithm and initial values \rightarrow predictable
- Unpredictable RNG (URNG)
 - Between TRNG and PRNG, practically unpredictable.
 - Utilizes randomness (entropy) of the system


Ayumu Chiba, Shuichi Ichikawa: "Evaluation of Random Number Generator Utilizing Weather Data and LFSR," IEEJ Transactions on Industry Applications, vol. 143, no. 2, pp. 80--86 (2023).

Shuichi Ichikawa: "Pseudo-Random Number Generation by Staggered Sampling of LFSR," Proc. Eleventh International Symposium on Computing and Networking (CANDAR 2023), pp. 134--140 (2023).

Hidetaka Masaoka, Shuichi Ichikawa, Naoki Fujieda: "Random Number Generation from Internal LFSR and Fluctuation of Sampling Interval," IEEJ Transactions on Industry Applications, vol. 141, no. 2, pp. 86--92 (2021). (in Japanese)

Hisashi Hata, Shuichi Ichikawa: "FPGA Implementation of Metastability-based True Random Number Generator," IEICE Transactions on Information and Systems, Vol. E95-D, No. 2, pp. 426--436 (2012).



Our web site

http://www.ccs.ee.tut.ac.jp/ich/

Information on

- Academic staffs
- Research themes
- Theses of past under-graduates and graduates

