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Abstract—Oblivious RAM (ORAM) is a technique to hide the
access pattern of data to untrusted memory along with their
contents. Path ORAM is a recent lightweight ORAM protocol,
whose derived access pattern involves some redundancy that
can be removed without the loss of security. In this paper, we
introduce last path caching, which removes the redundancy of
Path ORAM with a simpler protocol than an existing scheme.
By combining two caching strategies, our technique showed only
0.2% performance loss from the existing one, while keeping the
determinacy of the derived access pattern.

I. INTRODUCTION

Memory encryption [5] is a common technique for secure
processors to prevent information leakage from a data bus
to an external memory being observed [11], [13]. However,
information does not only be leaked from the data themselves,
but also from their access pattern, i.e. the sequence of memory
addresses accessed by the processor [6]. For example, some
of search queries to an email repository [6] and an SQLite
database [7] can be distinguished by observing access pattern.
Memory encryption hides the contents, while it cannot hide
the access pattern.

Oblivious RAM (ORAM) [4] is a technique to hide the data
and their access pattern by shuffling data and adding dummy
memory accesses. Path ORAM [10] is a recent lightweight
ORAM protocol, which was proposed with a hardware imple-
mentation called PHANTOM [7]. However, its overhead on
the bandwidth is still high for practical use.

This study focuses on the redundancy of Path ORAM. A
path is a set of memory blocks read and written through an
ORAM access. In Path ORAM, two consecutive paths has an
overlapped region. Writing to and reading from such regions

can be removed as redundant memory accesses without the
loss of security.

To deal with this redundancy, this paper introduces last
path caching, which has a simpler procedure than an existing
scheme, called Fork Path ORAM [15]. Last path caching also
has an advantage on security: the derived access pattern is
completely independent of the original access pattern, while
Fork Path ORAM might reflect it in a specific condition. In
the following sections, we evaluate ORAM systems and show
that our method achieves almost the same performance as the
existing one by combining two different caching strategy.

II. PATH ORAM
A. Organization of Path ORAM

Path ORAM [15] is a lightweight ORAM protocol, and
PHANTOM [7] is the first hardware implementation of Path
ORAM on FPGAs. The main data structure of Path ORAM
consists of an ORAM tree, a stash, and a position map, shown
in Fig. 1 (a).

The ORAM tree is a binary tree of encrypted data, which is
mapped to an external, untrusted memory. Assume the number
of blocks storing actual data to be N , the height of the tree L is
set to approximately log2 N , and the levels are numbered from
level 0 (root) to level L (leaf). Each leaf has its own ID from 0
(left) to 2L − 1 (right). Each node, which is sometimes called
a bucket, holds Z blocks. The number of blocks in the ORAM
tree, including dummy data, is calculated as (2L+1−1)Z. The
ORAM tree is accessed based on a path from the root to a
leaf. In this paper, the path to the leaf x is denoted as P(x).

The stash is an on-chip cache of the ORAM tree that
temporarily keeps blocks being read from the tree. Some
blocks might not be written back to the tree during an ORAM
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(a) Initial status.
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(b) Step 3: reading P(0) for block C.
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(c) Step 4: writing P(0) back.

Fig. 1. Organization and working example of Path ORAM.

access. The stash must be large enough that the probability of
shortage of the stash due to such blocks is negligible.

The position map is a lookup table between the block
address given from the processor and the path (or leaf ID)
that the corresponding block belongs. A block with a leaf ID
of x is found either in the buckets on P(x) or in the stash.
The capacity of the position map is NL bits. If it is too large
to be stored on the chip, a recursive approach is applied where
the position map is managed by another Path ORAM [15].

B. ORAM Access

An ORAM access in Path ORAM is divided into four steps.
It is also illustrated with an example in Fig. 1, where the
requested block from the processor is B. This example assumes
that L = 2 and Z = 2. In the ORAM tree, actual data blocks
are labeled by A, B, ..., and G, while dummy blocks are
denoted by blanks. Before a request comes, blocks A and B
are placed at the root and C is in the left node of level 1.
Blocks A, B, C, and D have their respective leaf IDs of 0, 1,
0, and 3.

Step 1 is a search for the stash. If the requested block is
found in the stash, it is immediately accessed by the processor
and the following steps are omitted. In this example, this step
has no effect because there are no valid blocks in the stash.

Step 2 is a lookup and an update of the position map. The
leaf ID of the requested block (x in the following steps) is
read from the corresponding entry in the position map. It is
then replaced by a random number from 0 to 2L − 1 so that
the block can be remapped to another path. In the example,

this step reveals that the block C is stored on P(0). It will be
remapped to P(2) after the ORAM access.

Step 3 is a read of a path. All blocks in the nodes on P(x)
are read from external memory and decrypted. Actual data
blocks are moved to the stash. Now that the requested block
is in the stash, it is accessed by the processor. In Fig. 1 (b),
all blocks on P(0), painted in gray, are read and the blocks
A, B, and C are stored into the stash.

Step 4 is a write back of the path. It applies the following
processes to all the nodes on P(x), in order from the leaf
to the root. First, it picks out blocks in the stash whose path
includes the target node. If Z or more blocks are extracted,
Z blocks chosen from them are encrypted and written to
external memory. Otherwise, all the extracted blocks and
dummy block(s) are written after encryption. To put it briefly,
blocks in the stash are written back to buckets as near as
possible to the leaf. In Fig. 1 (c), at first, blocks with paths
that includes leaf 0 are extracted. Since only P(0) includes
leaf 0, only the block A is picked. The block A and a dummy
block are written back to leaf 0. The left node of level 1 is
included by P(0) and P(1). The block B and a dummy block
are written there. The remaining block C is written to the root
with a dummy block. Note that some blocks might remain in
the stash after this step, though all blocks are written back to
the ORAM tree in this example.

With these steps, a request from the processor (that misses
in the stash) becomes a sequence of a read from and a write
to a random path. Therefore, the access pattern derived from
Path ORAM is a sequence of accesses to random paths, which
is completely independent of the original access pattern from
the processor.

III. REDUNDANCY OF PATH ORAM

A. Example of Redundant Access

Suppose a request to the block E comes after the example
shown in Fig. 1 (c). Since the block E is located in the leaf 1,
all blocks along P(1) is read from external memory. The point
is that the blocks read from the root and the left node of level 1
were written back and removed from the stash in the previous
ORAM access. If they remained valid on the chip, the access
to these nodes would be omitted. If the block B, instead of the
block E, were requested under the same condition, the whole
access to the ORAM tree would be omitted because the block
B was read to the stash in the previous ORAM access.

An observation from this example is twofold: (1) the paths
of two successive ORAM accesses overlap to some extent, and
(2) the preceding path-write-back and the subsequent path-read
of the overlapped part are redundant. The sequence of the
accessed paths has no information about the original access
pattern. The redundant parts of ORAM access can be safely
removed as far as the way of removal is also independent of
the original access pattern.

B. Path Merging

Fork Path ORAM [15] was proposed by Zhang et al. to
remove the redundant memory accesses in Path ORAM. The
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(a) Writing non-overlapped part of P(0).
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(b) Reading non-overlapped part of P(1).
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(c) Problem after a hit of the block B in the stash.

Fig. 2. Working examples of path merging in Fork Path ORAM.

basis of Fork Path ORAM is that, if the path that will be
accessed in the next ORAM access is known before the path-
write-back step, the overlapped part between the current and
the next paths can be determined.

Figure 2 shows an example of Fork Path ORAM, where a
path-read from P(0) has been completed and the next ORAM
request to the block E has arrived. Since the block E belongs
to P(1), the non-overlapped parts between the two paths are
the leaf 0 and the leaf 1. In the path-write-back, only leaf 0
is written back (Fig. 2 (a)). Similarly, only leaf 1 is read from
the ORAM tree in the next path-read (Fig. 2 (b)).

If the next requested block is not known, a dummy request
is inserted. In the original Path ORAM, it only has to be known
before completing the path-write-back. This difference causes
extra dummy requests in Fork Path ORAM, which may affect
the performance. However, even though a dummy request has
been inserted, there is a chance to replace it silently with an
incoming real request. At the time a real request comes, it
can be safely replaced if the series of write-back access that
has been issued is the same as the sequence that would have
been issued when it had been inserted from the beginning. This
supplementary technique is called dummy label replacing [15].

To increase the overlap of paths, Fork Path ORAM also
adapts a reordering of ORAM requests. It has a request
window with a fixed number of ORAM requests. The request
that has the nearest path to the currently accessed path in the
window is selected as the next request. If the number of real
requests is smaller than the window size, dummy requests are
inserted to fill the window.

Although Fork Path ORAM completely removes the access
to the overlapped parts of paths, it has two major weaknesses.
The first one arises from property of the dummy requests.
An application with a small number of memory request is
more sensitive to the access latency and easily affected by
the dummy requests. Its performance will be much worse
by adapting Fork Path ORAM due to extra dummy requests.
The dummy label replacing technique solves the problem to
some extent; however, it must be carefully considered that it
is worth the cost of making the ORAM controller much more
complicated.

The second weakness, which is more critical, security-
related problem, is the loss of the determinacy of the derived
access pattern. Suppose the blocks B and D are requested in
order after Fig. 1 (b). The write back step is the same as the
previous example shown in Fig. 2 (a). Since the block B is
found in the stash, the controller then skips the path access
for the block B and starts to search for the block D. The
only overlapped node between the previous path (P(0)) and
the block D’s path (P(3)) is the root. The non-overlapped
part, the left node of level 1 and the leaf 3, are read to the
stash (Fig. 2 (c)). The problem is that the left node of level
1, shown in black, has not been written back. It comes from
skipping the path access for the block B. If only the block
D had been requested after Fig 1 (b), the black node would
have been written back! It leaks the information that there
was a hit in the stash on the way, which may be a hint for
the original access pattern from the processor. Excluding such
ORAM accesses from the path merging may be possible by
checking if the next (or incoming) request will hit in the stash,
though it will catastrophically increase the complexity of the
controller.

IV. LAST PATH CACHING

In this paper, we propose last path caching as an alternative
technique to remove the redundant memory accesses, which
has a simpler procedure than Fork Path ORAM. Figure 3
(a) illustrates its principles of operations. An additional on-
chip cache, Last Path Cache (LPC), is placed between the
ORAM tree and the stash. It stores the previously written
path from the stash. Altough it can be write-through or write-
back, it is shown as a write-through cache in Fig. 3 (a). The
characteristics of the last path caching vary according to the
type of cache. In the following subsections, we introduce three
schemes: WT, WB, and WB/WT Hybrid.

A. WT Scheme

Figure 3 shows the organization and a working example of
the WT (write-through) scheme. There, all levels of the LPC
is set to write-through. It means that all the blocks in the LPC
have been also written to the ORAM tree and they are present
in the tree. In the example, if the block E is requested (Fig.
3 (b)), the overlapped part (including B and C) is supplied
from the LPC, while the non-overlapped part (including E)
is read from the ORAM tree. The non-overlapped part in the
LPC (including A) is simply ignored. On the write back, the
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(a) Last Path Cache between the ORAM tree and the stash.
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(b) Reading P(1) for the block E.
���������

� �

�

� � � �

	
���

	
��


	
���

	����� 	����
 	����� 	�����

�

� �

	�������

�	


�	


�	


�	


�	


���

(c) Writing P(1) back, along with the LPC.

Fig. 3. Organization and behavior of last path caching (write-through).

whole path are written to both the ORAM tree and the LPC,
as shown in Fig. 3 (c).

An advantage of the WT scheme is that no physical caches
are actually required. The blocks written to the LPC are those
that have been invalidated in the stash. Since their data have
not been overwritten in the stash at this point, they can be
simply reactivated if needed. It requires a table indexed by
a level that memorizes which blocks in the stash have been
written to the corresponding level, along with the reactivation
logic. They are expected to much smaller than the actual cache.

A weakness of the WT scheme is that the redundant write
accesses are not removed. It means the reduction of the
memory accesses becomes only a half of that achieved by Fork
Path ORAM, when ignoring the effect of the extra dummy
requests.

B. WB Scheme

Figure 3 describes the WB (write-back) scheme, where all
levels of the LPC is set to write-back. All blocks in the LPC
are dirty: they do not exist in the ORAM tree and they must
be written to the tree before invalidation. The read step (Fig.
4 (a)) works in a similar way as the WT scheme. The blocks
that were read from the LPC are invalidated, while those that
were not read (i.e. the non-overlapped part in the LPC) remain
valid. Before the write-back step, all valid blocks in the LPC
are written back to the ORAM tree (Fig. 4 (b)). Blocks in the
stash are then written back to the LPC, rather than the ORAM
tree (Fig. 4 (c)). From the viewpoint of the derived access
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(a) Reading P(1) for the block E.
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(b) Writing unread LPC blocks to the ORAM tree.
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(c) Writing stash blocks to the LPC.

Fig. 4. Behavior of the last path caching (write-back).

pattern with the WB scheme, it corresponds to a postponement
of the path-write-back until the next ORAM access.

An advantage of the WB scheme is that the sequence of
memory accesses becomes deterministic. The write-back step
of Fork Path ORAM [15] requires the overlapped region
between the current and the next path. Delaying the write
back with the LPC mitigates the requirements to the overlap
between the current and the previous path. This removes the
uncertainty due to the next path.

A weakness of the WB scheme is that the time between
reading a block in the ORAM tree and writing back to the
same block gets longer. DRAM is usually used as external
memory, which leverages locality of access with a row buffer.
Writing blocks immediately after reading increases the chance
for the blocks to hit in the row buffer. The delay of the write
back decreases the possibility of the row buffer hit, which
degrades the effective bandwidth of the memory.

C. WB/WT Hybrid Scheme

Here, we review the weak points of the above-mentioned
schemes. The weakness of the WT scheme gets more serious
near the root: such nodes are more likely to be included in the
overlapped region. The weakness of the WB scheme becomes
significant near the leaf: since the path-write-back begins from
the leaf, the relative increase of the delay gets larger in nodes
close to the leaf.

The last scheme, called WB/WT hybrid scheme, combines
them to complement each other. To be more precise, with a
threshold t, a part of the LPC from the root to the level t− 1



TABLE I
TRACES FOR EVALUATION, WHICH ARE SORTED BY MPKI (MISS PER

KILO INSTRUCTION) OF THE LAST LEVEL CACHE.

Name MPKI Name MPKI
face (facesim) 1.22 comm3 6.41

comm5 1.51 leslie (leslie3d) 7.75
black (blackscholes) 1.79 comm1 9.09

freq (freqmine) 2.69 ferret 13.00
comm4 3.74 comm2 14.99

fluid (fluidanimate) 4.09 libq (libquantum) 19.16
stream (streamcluster) 4.90 mummer 24.23

swapt (swaptions) 5.80 tigr 32.40

TABLE II
SYSTEM PARAMETERS.

Processor Cores
Core Type 4-way, out-of-order
# of Cores 4

Core Frequency 3.2 GHz
Last-level Cache 512 kB/core

DRAM and Memory Controller
# of DRAM Channels 4

DRAM Frequency 800 MHz
Peak Throughput 51.2 GB/s

ORAM Controller
Data Block Size 64 B

Height of Tree (L) 23
# of Slots per bucket (Z) 4

# of Levels for Treetop Cache 3
ORAM Hit Latency 40 ns
AES Circuit Latency 25 ns

AES Circuit Throughput 204.8 GB/s

is set to write-back and the rest (i.e. from the level t to the
leaf) is set to write-through. A physical cache is required only
for the write-back levels. Data in the stash can be reused for
the write-through levels as we had explained in Section IV.A.

V. EVALUATION

A. Methodology

In this section, the performance of the proposed schemes is
evaluated with a trace-based simulation environment. Sixteen
traces from single-thread applications of the Memory Schedul-
ing Championship [12] are used, Applications, listed in Table
I, are composed of PARSEC, SPEC CINT2006, BioBench, and
commercial (comm) workloads. Requests in the traces have
been filtered in advance by a last level cache with 512 kiB of
capacity and 64-byte data blocks [1]. They are simulated with
a modified version of a DRAM simulator usimm [1] where
an ORAM controller is added between the processor and the
DRAM controller. Main system parameters are summarized in
Table II. All four cores executes the same program. The first
400 million instructions are fast-forwarded to warm ORAM
up. The following 100 million instructions are used for the
measurement. The performance index is the sum of the number
of cycles to execute them. The number of ORAM accesses, the
number of DRAM accesses, and the miss rate in row buffers
of DRAM on write are also measured for reference.

The following five ORAM variants are evaluated:
• the original Path ORAM [10] (Normal) as the baseline

of performance,

TABLE III
RESULT OF EVALUATION WITHOUT REORDERING.

Criterion WB WT WB/WT Fork
# of Cycles +0.5% -2.2% -3.9% -4.0%

# of DRAM Accesses -8.3% -4.2% -8.3% -8.3%
DRAM Row Buffer +89.9% 0.0% +7.3% +7.3%
Miss Rate on Write

• the WB scheme (WB),
• the WT scheme (WT),
• the WB/WT hybrid scheme (WB/WT), and
• Fork Path ORAM [15] (Fork) for the comparison.

In the WB/WT hybrid, the threshold is set to 8 unless
otherwise mentioned: the LPC blocks from the root to the level
7 are set to write-back. We also evaluate a case of adapting
a reordering of ORAM requests [15]. The size of the window
is set to 4 or 8 requests, which is denoted as Q4 or Q8,
respectively. In order to prevent starvation, the movement to
find the next path is limited to one-way: the next request is
selected from those with higher leaf ID than the current one.
If no such requests are found, a request with the smallest leaf
ID is selected.

B. Evaluation Result without Reordering

Table III summarizes the evaluation results in the case the
reordering of requests is not applied. The results are shown
by the relative difference from Normal. The average values
of all the traces are shown because they show almost the
same result. The WB scheme decreased the performance by
0.5%. While the number of DRAM accesses was reduced, the
miss rate in row buffers was almost doubled, which widely
increased the time to process an ORAM request. In the WT
scheme, the performance gain was 2.2%, almost half of that
in the WB/WT hybrid or Fork Path. The reduction in DRAM
accesses was also halved. This result confirms the discussion
about the weakness of the WT scheme in Section IV. The result
of the WB/WT hybrid almost matched that of Fork Path. The
increased row buffer miss came from the omission of access
to levels near the root. Such blocks are also likely to hit in
row buffers because they fit in a single row buffer per DRAM
channel.

C. Evaluation Result with Reordering

Figure 5 shows the relative execution time where the re-
ordering of requests is applied. Graphs (a) and (b) correspond
the cases where the size of the window is 4 and 8, respectively.
The X-axis is the shortened name of trace, while the Y-axis is
the difference of the relative number of executed cycles. Avg.
stands for the average of all the traces. The result of the WB
scheme is omitted in this evaluation.

When the window size was 4 (Fig. 5 (a)), Almost the
same result among the applications was observed, in similar to
Table III. The average performance loss of WB/WT+Q4 over
Fork+Q4 was only 0.2 percentage points.

On the other hand, when the window size increased to
8 (Fig. 5 (b)), the difference of the relative performance
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Fig. 5. Result of performance evaluation with reordering window size of 4
(Q4) and 8 (Q8).
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Fig. 6. Breakdown of the difference of the number of DRAM access.

among the applications was shown. The performance gain
got smaller in the applications that had fewer cache misses,
with exceptions of leslie and libq. The advantage of the
WB/WT hybrid scheme over Fork Path was observed in such
applications. The average increase of performance was almost
the same between them: WB/WT+Q8 was 6.86% and Fork+Q8
was 6.94%.

Detailed analysis on the difference of the number of DRAM
accesses was made in Fig. 6. Dark bars correspond to the
difference (increase) of the number of ORAM accesses, while
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Fig. 7. The effect of the threshold in WB/WT Hybrid Scheme.

light bars mean the difference (decrease) of the number of
DRAM accesses per ORAM access. The product of two
numbers makes the number of DRAM accesses.

The increase of ORAM accesses came from dummy ac-
cesses due to the shortage of requests from the processor. The
number of dummy requests became large when there were few
cache misses (i.e. an application on the left, leslie, or libq was
running). Dummy requests with Fork Path increased by 0.4
points on average over the proposed schemes. The increased
dummy requests came from earlier deadline to decide the next
path, which had been pointed out in Section III.B.

The number of DRAM accesses per ORAM access cor-
responded to the number of the redundant memory accesses
actually omitted. Its difference between WB/WT and Fork was
only 0.1 points on average. When the paths of two successive
requests went too close, their overlapped region was partially
stored in the write-through levels of the LPC where write to
external memory could not be removed. However, the result
implied that it was rare case.

D. Effect of Threshold in Hybrid Scheme

Figure 7 depicts the result of a sensitivity study to the
threshold of the WB/WT hybrid scheme. Similarly to Fig. 5,
Graph (a) shows the difference of the number of executed
cycles for each application. The name of setting is expressed
as WBn/WTm, WBn, or WTm, where n levels of the LPC from



the root are set to write-back and the other m(= 24 − n)
levels are write-through. Note that WT24 is identical to the WT
scheme. Graph (b) summarizes the difference of the number
of DRAM accesses (left) and the difference of the miss rate
in row buffers (right). In similar to Table III, the average of
each of them is only shown because both of them did not vary
with application.

From Fig. 7, the peak of the reduction of execution time was
found at WB8 for the all applications. The reduction of DRAM
accesses per ORAM access almost reached at the upper limit
at WB8, while the row buffer miss steadily rose by increasing
the threshold. Thus, the WT and WB schemes were balanced
at this point.

VI. RELATED WORK

After the algorithm [10], the first implementation [7], and an
exploration of design space [9] of Path ORAM were presented,
many optimization techniques and ORAM architectures simi-
lar to Path ORAM have been proposed, including Fork Path
ORAM [15] explained in Section III.

The PHANTOM implementation [7] applied another
caching technique, called treetop caching, to the ORAM tree.
It caches all blocks on a few levels of the tree from the root.
It is achieved by skipping access to these levels and leaving
blocks, which would be moved to the tree, be untouched in
the stash. Since nodes near the root are the most frequently
accessed, the treetop caching leverages spatial locality of the
ORAM tree, while our last path caching utilizes temporal
locality. Though the effect of these two caching techniques
are partially overlapped, using both of them gives higher
performance. According to our evaluation with a similar envi-
ronment to that shown in Section V.A, a 3-level treetop caching
increased the performance by 5.7% on average. The average
performance gain of WB/WT+Q8 was 6.9% (see Section V.C).
The number of blocks required for the cache was almost the
same between them. The combination of these two caches
achieved 7.5% of the performance gain. Detailed analysis on
their combination is left as future work.

Ring ORAM [8] is an ORAM architecture based on Path
ORAM. In the original Path ORAM, if a node is included
in the accessed path, all blocks in the node are read out
to the stash. Ring ORAM limits the number of blocks read
by an ORAM access to only one per node. As a result, the
total number of read blocks becomes unproportional to Z,
the number of blocks for each node. However, it may reduce
the efficiency in capacity because of an increased number of
dummy blocks. Although it was reported that it did not affect
in a practical use [8], the detail has not been reported. The idea
of separate treatment of the path-read and the path-write-back
was also seen in RAW ORAM [3]; its goal was to reduce the
cost of encryption, which is not related to our research.

When the position map is too large and the recursive
approach is applied as explained in Section II.A, Freecursive
ORAM [2] is effective. It introduces a PosMap Lookaside
Buffer (PLB), a cache to the position map, which greatly
reduces the ORAM accesses caused by looking up the position

map. Although the recursive approach is not currently consid-
ered in our research, the proposed schemes do not interfere
the use of the PLB.

Prefetch is often useful when a running program has high
spatial locality. In Path ORAM, blocks can be prefetched by
making multiple blocks always mapped to the same path. This
technique is called super block [9]. PrORAM [14] extends it
to a dynamic approach: it merges adjacent blocks into a super
block or unmerges super blocks on the fly. It showed higher
performance than the static approach by unmerging useless
super blocks. These approaches are also orthogonal to the
proposed schemes.

VII. CONCLUSION

This paper proposed a technique to remove the redundant
memory accesses in Path ORAM, which was simpler than
existing Fork Path ORAM and was determinate in the access
pattern derived by ORAM. Our evaluation showed that the
performance loss from the existing method was no more than
0.2%. The advantage of the reduced dummy accesses was also
observed when ORAM requests were not frequently arrived.

Our future work includes a detailed analysis on the appli-
cability of the proposed technique, especially with a larger
cache to the ORAM tree. We are also planning to implement
the corresponding controller on FPGAs to verify the simplicity
of the last path caching.
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