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Abstract—A TRNG (True Random Number Generator) is an
important component for security in mobile computing and IoT.
This paper presents an light-weight FPGA implementation of a
previously proposed latch-based TRNG, while keeping the quality
of generated random numbers. By accumulating the generated
random numbers fifteen times with an XOR operation for each
output word, the proposed TRNG with 16 latches passed the
NIST SP 800-22 test suite, whereas the original TRNG required
248 latches. An important finding of this work is that the quality
of random sequence is greatly improved by XOR-ing temporally
interleaved series of bits.

Index Terms—Random number generation, Field pro-
grammable gate arrays, System-on-chip

I. INTRODUCTION

A true random number generator (TRNG) utilizes unpre-
dictable physical phenomena to produce random numbers.
It is often used for security applications such as obtaining
a cryptographic key in an unpredictable way. In mobile
computing and IoT (Internet of Things) applications where the
resource is strongly limited, the hardware cost of TRNG is a
critical factor in addition to the quality of generated random
numbers.

One of the phenomena adopted in TRNGs is the metasta-
bility of a latch or a flip-flop [2], [6], [7], [12]. The authors
previously proposed a latch-latch composition of a TRNG [6],
shown in Fig. 1, which is an improved version of an RS-latch
TRNG based on FPGAs (Field Programmable Gate Arrays)
[7]. Each latch in [6] is implemented as a soft macro, which
is more suitable for the latest design tool of Xilinx FPGAs.
In the previous work [6], the latch-latch TRNG circuit was
evaluated as a stand-alone circuit with a FIFO (First-In First-
Out) buffer and a serial controller. It passed the diehard test

[10] with 224 latches and the NIST SP 800-22 test suite [11]
with 320 latches. Though it was smaller than a soft macro
implementation of the past RS-latch TRNG [7], it was still
much larger than the result of the hard macro implementation
on an older FPGA [7].

In this paper, we propose a method to reduce the required
amount of hardware of the latch-based TRNG while keeping
the quality of output random numbers. The output word of the
TRNG is accumulated by an exclusive OR (XOR) operation
and harvested at certain minimum intervals. The point is that
the accumulation is performed by word, instead of bit. An
inportant finding of this study is that the quality of random
numbers can be greatly improved by this by-word accumula-
tion when temporally adjacent output bits are correlated. To
prove this through detailed evaluation, the TRNG is embedded
as a peripheral of an FPGA SoC (System on a Chip), which
runs a Linux distribution called Xillinux [14]. There, the
statistical properties of generated random bitstrings can be
checked immediately in the processing system of the SoC.

II. POST-PROCESSING OF TRNG OUTPUT

Various post-processing methods for TRNGs have been
proposed to improve the statistical properties of their output.
This is because TRNGs may have a bias, or an imbalance of
appearance frequency of zero and one. A trivial solution to
eliminate the bias is to apply a cryptographic hash function to
the output, however it is left out of the discussion because
it requires an excessively large amount of hardware. Post-
processing methods with minimal hardware are categorized
into two classes: entropy compression and scrambling.
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Fig. 1. A latch-latch composition of an RS latch-based TRNG [6].

Entropy compression transforms an n-bit random bitstring
with a bias into an m-bit random bitstring with a smaller
(possibly zero) bias. There are two well-known compression
methods: the von Neumann corrector [13] and the XOR cor-
rector [4]. The von Neumann corrector outputs ‘0’ or ‘1’ when
two successive input bits are “01” or “10,” respectively. Input
bits of “00” and “11” are simply discarded. If the input bits are
independent of each other, the bias will be entirely eliminated.
One of the shortcomings of the von Neumann corrector is its
poor generation rate m/n: it is only 25% at most. To balance
the reduction of the bias and the generation rate, methods using
an (n,m) BCH (Bose–Chaudhuri–Hocquenghem) code were
also studied [8]. The XOR corrector performs XOR operation
to multiple biased bits to generate a single bit with a smaller
bias. Our previous work [6] adopted it spatially: output bits
generated at the same time by hundreds of latches were XOR-
ed to obtain a single TRNG output bit.

Scrambling is a method to generate an unbiased bitstring of
the same length as the input by a feedback of the output with
a shift register. It is often used to post-process TRNG output
[1], [9]. In general, an output bit of a TRNG is XOR-ed by one
or more internal bit(s) of the shift register and fed as its input.
In other words, it mixes the output of TRNG with the input of
an LFSR (Linear Feedback Shift Register). When a sufficient
amount of TRNG output is given, the bias will converge to
zero [1].

Note that the scrambling only improves the statistical prop-
erties of the output random bitstring and the predictability of
the output bit due to the bias cannot be reduced [5]. If the post-
processing algorithm and the output bitstrings are known, back
calculation of the TRNG output might be possible. Once the
bias of the TRNG output is revealed, the next output bit might
be predictable with a probability depending on the bias.

Our method accumulates a random word generated by a
TRNG to the previous output word once or multiple times.
If the method accumulates a word only once for each output
word, it will correspond to scrambling. On the other hand, if
the accumulation performs multiple times, it will be catego-
rized into entropy compression as it requires multiple words
to obtain a single output word.
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Fig. 2. Block diagram of the evaluation system.

III. SYSTEM DESCRIPTION

A. Overall system

To evaluate the latch-latch TRNG in detail, we built an
evaluation system based on a demo configuration of the
Xillybus boot partition kit [14]. Xillybus is an FPGA IP core
that provides a simple FIFO-based interface between a user
logic and a CPU core, along with its software driver. The
software driver is available on Xillinux, a Linux distribution
for FPGA SoCs based on Ubuntu LTS. Its boot partition kit
includes the HDL (Hardware Description Language) source
code of a demo configuration of Xillybus. The versions of the
boot partition kit and Xillinux we chose were 2.0a and 1.3,
respectively.

Figure 2 depicts the block diagram of the evaluation system.
We use it as a standalone Linux server where a user can login
via ssh. In general, an FPGA SoC has the processing system
part and the programmable logic part, which communicate
each other via the AXI bus. In Xillybus, a user circuit is
connected to input and output FIFOes and implemented on
the programmable logic part. We replaced a sample loopback
circuit in the demo configuration with our TRNG circuit,
described in Section III.B.

From a software point of view, these FIFOes are ab-
stracted to device files /dev/xillybus_read_32 and
/dev/xillybus_write_32. To obtain random numbers
from the TRNG peripheral, a 32-bit parameter of the circuit
is first written via the write device file, which is valid until
the file is closed. After that, the generated random numbers
are sequentially readable via the read device file. Source
codes of statistic test suites are slightly modified to deal with
these device files, which means that the statistical properties
of the random bitstrings generated by the TRNG can be
evaluated immediately in the processing system part of FPGA
SoC. In this manner, the evaluation system can be used as a
practical embedded Linux system, which runs any application
that requires a TRNG.
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Fig. 3. Block diagram of the proposed TRNG circuit.

B. Proposed TRNG circuit

Figure 3 depicts the block diagram of the proposed TRNG
circuit, connected to Xillybus FIFOes as a user logic. There
are two major differences from the evaluation system in
the previous work [6]. First, the output of the latch-latch
TRNG (LL TRNG), converted from serial to parallel (S/P),
is sent to the read FIFO of Xillybus. Second, the circuit
can generate a post-processed output (Accumulated in Fig. 3)
by accumulating the Raw output with an XOR operation. An
additional down-counter circuit controls how many times the
output word must be accumulated at least. Post-processing of
the serial output of the TRNG by the von Neumann corrector
(VNC) will also be presented for comparison.

Note that this accumulation is performed by a 32-bit word,
instead of a single bit. If the accumulation width was one bit,
the derived circuit would be simply a serial implementation
of the XOR corrector, where each output bit would be XOR-
ed to the previous bit. The accumulation width of 32 bits
means that each bit is XOR-ed to the 32nd bit from the
last. This temporal interval greatly improves the quality of
derived random numbers, as shown in Section IV.B. It also
enables software to trade the quality of random numbers for
their generation rate. If it reads the read device file slowly,
the number of times of accumulation becomes large and the
quality of random numbers might be better. One of the possible
shortcomings of this accumulation is that it requires 32 XOR
gates. It might affect the amount of hardware of the TRNG
circuit, which will be evaluated in Section IV.D.

C. Parameterization of TRNG

To evaluate the TRNG with various numbers of latches
without resynthesis of the system, we implemented the latch-
latch TRNG component as shown in Fig. 4. Eight RS latches
are gathered into a latch set and their outputs are XOR-ed
to obtain the output of the set. The outputs of up to thirty-
two sets are then XOR-ed again to obtain the TRNG output
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Fig. 4. A Latch-latch TRNG with a variable number of latches.

with 8, 16, ..., 256 latches. The TRNG component includes
three individual TRNGs. The output of the selected TRNG is
supplied to the S/P converter (or VNC).

A 32-bit integer from the processing system via the write
FIFO (Params in Fig. 3) configures the following parameters
of the TRNG and its post-processing method:

• t init and t transit (4 bits each) determines the cycle
time of the TRNG;

• num set (5 bits) selects the number of sets to obtain the
TRNG output;

• trng sel (2 bits) selects one of the three individual
TRNGs;

• use vnc (1 bit) determines if the VNC is used for post-
processing; and

• num accum (4 bits) sets the minimum number of times
of accumulation.

When the num accum parameter is set to zero, accumulation
is disabled, and the Raw output is selected as TRNG output.



TABLE I
THROUGHPUT OF THE TRNG CIRCUITS.

Throughput
TRNG Variant [Mbit/s]

Raw 20.000
Accumulated-1 20.000
Accumulated-2 10.000
Accumulated-4 5.000
Accumulated-15 1.333

VNC 4.962

The remaining 12 bits are reserved.

IV. EVALUATION

A. Methodology

We conducted both the diehard test [10] and the NIST SP
800–22 test suite [11] on the evaluation system, which was
implemented on an Avnet ZedBoard that includes a Zynq-
7000 XC7Z020-CLG484-1 FPGA SoC. The logic circuits are
synthesized and implemented by Vivado 2017.3 with default
parameters. The diehard test [10] is used to briefly check the
quality of random numbers. It consists of 18 types of tests and
requires about 100 Mbits of random bitstring. It takes about
one minute to complete the tests. The NIST SP 800–22 test
suite [11] is used for an advanced check, which requires 1 Gbit
of random bitstring and about five hours of computation. We
adopt the same criteria as the previous work [6] for passage
of the tests.

Evaluated TRNG variants are categorized into three groups:
Raw, Accumulated, and VNC. The labels Raw and Accumu-
lated correspond to the output shown in Fig. 3. The number
n (n = 1, 2, ..., 15) after the label Accumulated stands for the
number of times the output must be accumulated before being
sent out. For example, in the TRNG variant Accumulated-2,
the output word will be accumulated at least twice. We also
evaluate the use of von Neumann corrector (VNC) [13]. The
cycle time of the TRNG is set to 50 ns: the shortest possible
time that keeps the quality of TRNGs according to the previous
work [6].

Table I summarizes the throughput of the evaluated TRNG
circuits with 128 latches, measured from the processing system
by reading 256 bytes in a single read. It was exactly equivalent
to the theoretical limit calculated from the cycle time in the
Raw and Accumulated variants, which meant that Xillybus
and other interconnections did not become a bottleneck of the
system. The throughput with VNC was slightly lower than the
theoretical limit, which came from a bias of the Raw output.

B. Effect of by-word accumulation

First, we conducted a simulation on the Raw bitstrings to
compare the accumulation methods. We collected the Raw
output of 400 Mbits for each of three TRNGs, as shown in Fig.
4. They were post-processed by each of the by-word accumu-
lation (i.e. the proposed circuit) and the by-bit accumulation
(i.e. serial implementation of XOR corrector). The width of

TABLE II
THE NUMBER OF FAILURES IN THE DIEHARD TEST OF BITSTRINGS

DERIVED BY SIMULATED ACCUMULATION.

Accumulated
#latch Accum. by Raw n = 1 n = 2 n = 4

64 Word 37 31 16 0
Bit 35 32 7

128 Word 15 10 0 0
Bit 10 9 0

a word in the by-word accumulation is 32 bits. The derived
random bitstrings, along with the Raw bitstrings, are evaluated
by the diehard test. The point is that the same Raw bitstrings
are given to both accumulation methods. The effect of the
accumulation method, rather than the effect of variation of
the quality of the TRNGs themselves, is emphasized by this
simulation. The number of latches is set to 64 or 128, while
the number of times of accumulation, n, is set to 1, 2, or 4.

Table II shows the number of failed tests (out of 54) for each
set of bitstrings derived by the simulated accumulation from
the same Raw bitstrings. The rows Word and Bit stand for the
by-word and by-bit accumulation methods, respectively. The
by-word accumulation almost always gave fewer failures than
the by-bit accumulation. In particular, it passed all the tests
only with the by-word accumulation in two cases: 64 latches
with n = 2 and 128 latches with n = 4.

This result implies that a bitstring generated by a latch-based
TRNG has the property that its temporally adjacent bits are
somewhat correlated and the correlation ceases as the time
interval increases. A simple XOR corrector may generate a
poor output sequence because the XOR corrector supposes
that its input bits are independent of each other. Therefore,
the proposed by-word accumulation, shown in Fig. 3, is a
reasonable design choice.

C. Result on the quality of random numbers

Figure 5 plots the evaluation results with the diehard
test for each number of latches. The x-axis represents the
number of latches, while the y-axis represents the number
of failed tests out of 54 (18 types of tests × 3 TRNGs).
Note that the throughput of the Raw variant is equivalent to
the Accumulated-1 variant and the VNC variant has almost
the same throughput as Accumulated-4, as shown in Table I.
When comparing these pairs in the number of failed tests,
the Accumulated variants showed the better results especially
when the number of latches are relatively large.

Figure 5 also showed that sometimes one of the tests failed
even though the number of latches was large enough (e.g.
Accumulated-1 with 224 latches). In all the cases, a failure
occurred in either the OPERM5 or the overlapping sums test.
It has been reported that these two tests might have bugs,
which result in a higher possibility of giving false positives
[3]. Therefore, we exclude these tests from the subsequent
discussions.

Figure 6 summarizes the result of the diehard test of all the
TRNG variants. The y-axis, the number of latches to pass the
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test, is obtained by the maximum number of latches that failed
in at least one test (except OPERM5 and overlapping sums)
plus 8. The Raw variant required 216 latches and even with the
VNC it required 96 latches. On the other hand, as also shown
in Fig. 5, it reduced to 168 and 56 latches by Accumulated-1
and Accumulated-4, respectively. It continued to reduce as the
minimum number of times of accumulation increased. At last,
by accumulating the output fifteen times, the TRNG with only
16 latches passed the diehard test.

Finally, the Raw, Accumulated-1, and Accumulated-15 vari-
ants were tested by the NIST test suite. Only one of the three
TRNGs (TRNG A in Fig. 4) was evaluated. Table III shows
the summary of the results. In the Raw and Accumulated-1
variants with the number of latches that passed the diehard
test (i.e. 216 and 168 latches, respectively), the TRNG failed
one of the tests as its acceptance rate (97.8% in the both
cases) was slightly lower than the threshold (98.0%). The
required numbers of latches to pass the NIST test suite were
248 and 200, respectively. The Accumulated-15 variant passed

TABLE III
THE RESULTS OF THE NIST TEST SUITE.

TRNG #Latch Result
Raw 216 FAILED (CumulativeSums)

240 FAILED (CumulativeSums)
248 PASSED

Accumulated-1 168 FAILED (BlockFrequency)
192 FAILED (Universal)
200 PASSED

Accumulated-15 16 PASSED
24 PASSED
32 PASSED

the NIST test suite with 16 latches.

D. Result on the amount of hardware

Finally, the TRNG circuit shown in Fig. 3 is separately syn-
thesized and implemented to evaluate the amount of hardware.
The numbers of LUTs (Look-Up Tables) and register elements
(i.e. flip-flops and latches) of the circuit after implementation
are recorded. To evaluate only one TRNG (TRNG A in Fig. 4),
other TRNGs (TRNG B and C) are explicitly removed. Also,
with a fewer number of latches, redundant sets of latches are
explicitly removed. The TRNG variants that passed the NIST
test suite in Table III are evaluated.

Table IV summarizes the amount of hardware, along with
area-delay product, when implementing the TRNG circuit on a
Zynq-7000 FPGA SoC. We estimated the amount of hardware
of the latch-latch TRNG as 2.2 LUTs and 3 registers per latch
in the previous work [6]. This estimation well explains the
result. The numbers of additional LUTs to the estimation were
12 (= 558− 2.2× 248) in the Raw variant and 44 (= 484−
2.2 × 200) in the Accumulated variants. The extra 32 LUTs
were likely to be used in the accumulation circuit.

To compare the amount of hardware in a single measure, we
calculated LUT equivalent as L+R/2, where L and R are the



TABLE IV
COMPARISON OF AREA-DELAY PRODUCT. ACCUMULATED VARIANTS ARE

ABBREVIATED AS ACCUM-n.

Raw Accum-1 Accum-15
248 latches 200 latches 16 latches

# of LUTs 558 484 80
# of Registers 828 683 126

LUT equivalent 972 825.5 143
Cycle Time [ns] 50 50 750

Area-delay
product [x103] 48.6 41.3 107.3

numbers of LUTs and registers, respectively. This definition
is based on the fact that a slice in Zynq-7000 FPGA SoC has
four LUTs and eight registers.

The Accumulated-1 variant reduced LUT equivalent and
area-delay product by 15.1%. Although it was considered as a
positive result, it should be noted that this variant is considered
as scrambling, as we explained in Section II. Scrambling does
not improve the unpredictability of the output bit. Therefore,
this variant will be preferred when fast generation of random
numbers is required and only the statistical properties matter.

The LUT equivalent of the Accumulated-15 variant was
6.8 times smaller than the Raw variant, while its area-delay
product was 2.2 times larger because of additional circuits
such as the S/P converter. By compressing entropy in an
effective way, the required hardware was greatly reduced. As a
result, the proposed TRNG circuit became small enough and
consumed less than 0.2% of logic elements available in the
XC7Z020 FPGA SoC (53,200 LUTs and 106,400 registers).

Although accumulating output more than 15 times might
further reduce the number of required latches, it should be
noted that it also increases the risk of picking “useless” latches,
which generate constant (or almost constant) output. In our
previous work [6], the proportion of latches with constant
output was about 2/3. We also confirmed that, through a pre-
liminary evaluation with the evaluated Zynq-7000 FPGA SoC,
40.4% of the latches had constant or almost constant (with
99.99% or more probabilities) output. As a result, extremely
poor TRNG will be made with a probability of pl, where p is
the proportion of such latches and l is the number of latches
in the TRNG. It will rapidly increase with the extremely small
number of latches. An extensive evaluation, probably with
multiple FPGA SoC chips, is required to evaluate such a risk,
though we leave this as future work.

V. CONCLUSION

We have proposed a new light-weight latch-latch com-
position for RS latch-based TRNGs. This paper presented
an accumulation method that further reduced the number of
required latches. The TRNG circuit with the proposed method
reduced the number of latches for passing the NIST test
suite from 248 to 16. As a result, the required hardware
elements of FPGA became 80 LUTs and 126 registers, which
were small enough to be adopted in mobile computing and

IoT applications. It can also offer a trade-off between the
generation rate and the quality of random numbers.

Our future work includes a detailed evaluation, especially
with multiple FPGA devices, to show the availability of the
latch-latch TRNG and the proposed accumulation method.
Sensitivity studies with regard to operational conditions, such
as temperature and supply voltage, are also important for the
practicality.
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