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Abstract—This paper presents the design and evaluation of
an unpredictable random number generator (URNG) utilizing
cryptocurrency prices. A URNG operates using a deterministic
algorithm, while utilizing external entropy sources to generate
random numbers that are practically unpredictable. The pro-
posed URNG employs a linear feedback shift register (LFSR),
whose sampling period are fluctuated by the cryptocurrency price
Pt or its logarithmic return Rt. Using Bitcoin (BTC) price data,
we simulated the proposed URNG and evaluated its randomness
with the Diehard test. Our findings suggest that a 40-bit or longer
LFSR, with sampling period fluctuations determined by either
the least significant bit of Pt or the comparison of Rt to its
average value, achieves satisfactory randomness quality. Future
work includes evaluating the URNG with other cryptocurrencies
and exploring new methods for entropy extraction.

Index Terms—URNG (Unpredictable Random Number Gen-
erator), LFSR (Linear Feedback Shift Register), EMH (efficient-
market hypothesis), bitcoin

I. INTRODUCTION

Random numbers are essential in many applications, includ-
ing security and simulations. Random numbers are typically
classified into two categories: True Random Number (TRN)
and Pseudo-Random Number (PRN).

TRN is generated from physical phenomena, such as ther-
mal noise or metastability, and is inherently unpredictable.
Since TRN relies on physical phenomena, dedicated hardware
called TRNG (True Random Number Generator) is essential
to generate TRN [1].

PRN, on the other hand, is generated from a deterministic
algorithm and an initial value, which means that PRNG
(Pseudo-Random Number Generator) can be implemented in
either software or hardware. The primary drawback of PRN is
that its future values can be predicted by deducing its internal
states and generation algorithm.

Suciu et al. [2] introduced the concept of Unpredictable
Random Number (URN), which exhibits characteristics be-
tween those of PRN and TRN. URN is generated using a deter-
ministic algorithm but incorporates external entropy sources to
ensure practical unpredictability. Suciu et al. generated URNs
using the performance counters of a microprocessor and the
background process activities.

Masaoka et al. [3] proposed a URNG (Unpredictable Ran-
dom Number Generator) that sequentially samples a built-in
LFSR (Linear Feedback Shift Register) in a microprocessor.
In this LFSR-based URNG, the least-significant 32 bits of a
128-bit LFSR were sampled as URN. The entropy source for
this URNG is the fluctuation of sampling intervals, typically
caused by interrupts. The generated sequence of URNs passed
the Diehard test [5], although the design requirements of
their URNG were not thoroughly discussed. Kamogari and
Ichikawa [4] examined the randomness quality of LFSR-based
URNG through extensive simulations, elucidating the rela-
tionships between the design parameters and the randomness
quality.

By utilizing the external entropy source, a URNG can be im-
plemented solely in software. Chiba and Ichikawa [6] proposed
using meteorological data as an entropy source for URNG.
Meteorological observation data are publicly available on the
Internet, with new data uploaded continuously. These data,
generated from physical phenomena, are usable as entropy
sources. Chiba and Ichikawa [6] generated URNs by using
wind direction data to vary the sampling period of an LFSR-
based URNG. The derived URNs passed both the Diehard
test [5] and the NIST test [7].

The present study examines using cryptocurrency price as
an entropy source for an LFSR-based URNG. Cryptocurren-
cies represent digital assets primarily used as a medium in
exchange, employing cryptography to secure transactions and
control the creation of new units [8]. In essence, cryptocur-
rencies are digital money, exchangeable with other currencies
in the market, with exchange rates that fluctuate continuously
like those in the foreign exchange market.

While stock prices could also be considered, their data are
often commercially provided as a paid service with various
restrictions. In contrast, real-time cryptocurrency data are
freely available and open to the public, making them suitable
for research purposes. Additionally, the data rate of cryptocur-
rency data1 is much higher than the 4 bits per hour derived

1In case of Bitcoin price, 5 decimal digits are derived for each minute.
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(b) Sample data

Fig. 1: Histogram of Rt (BTC)

from wind direction data [6], suggesting that the generation
rate could be significantly higher.

The rest of this paper is organized as follows. Section II
introduces the background and related studies of this work.
Then, Section III outlines the design of a URNG that utilizes
LFSR and cryptocurrency prices, and Section IV presents the
evaluation results. We conclude this work in Section V.

II. BACKGROUND

A. Efficient Market Hypothesis

Efficient Market Hypothesis (EMH) is a hypothesis in
financial economics that posits: (1) the stock price fully and
fairly reflects all available information about that stock, and
(2) the stock price should exhibit the appearance of a memory-
less random walk [10].

Many studies investigated market efficiency by analyzing
the behavior of stock or currency prices. The following are
some examples of such studies closely related to the current
research.

Doyle and Chen [11] applied a randomness test for RNGs
to stock market movements to test market efficiency. They
reported that most markets exhibit idiosyncratic recurrent
patterns, contradicting the EMH.

Noakes and Rajaratnam [12] used the overlapping serial
test to assess market efficiency on the Johannesburg Stock
Exchange. They found a high degree of non-randomness in
small cap stocks and observed that many stocks exhibited
inefficiency during the crisis period.

Noda [13] measured the degree of market efficiency in
Japanese stock markets using a time-varying model approach.
Tran and Leirvik [14] improved Noda’s method by intro-
ducing a new measure that facilitates the comparison of
market efficiency across assets, time periods, regions, and
data frequencies. Tran and Leirvik first investigated Japanese
stock markets [14], and later reported the efficiency of cryp-
tocurrency markets [15]. They found that the cryptocurrency
markets were mostly inefficient before 2017 but became more
efficient over the period 2017–2019 [15].

As demonstrated by the aforementioned studies, cryptocur-
rency markets are not fully efficient; however, they are partially
efficient and have been becoming more efficient in recent
years. Therefore, they are regarded as a promising source of
entropy for a URNG.

This study investigates the URNG which utilizes the behav-
ior of cryptocurrency data.

B. Random Walk Model

In a market where EMH holds, the market price is expected
to follow a random walk model. Under this situation, the
price can be modeled by the following equation, known as
the Geometric Brownian Motion (GBM) model.

dPt = µPtdt+ σPtdWt (1)
µ = R̄t + σ2/2 (2)

In Equations (1) and (2), Pt and Rt represent the price and
the logarithmic return at time t, respectively. Wt is a Wiener
process where Wt ∼ N(0, t). The parameter µ represents
growth rate, while σ represents volatility, or the standard
deviation over the sample period. R̄t in Eq.(2) is the average
of Rt over the sample period.

The stochastic differential equation in Eq.(1) is given by
Eq. (3).

Pt = P0 exp

((
µ− σ2

2

)
t+ σWt

)
(3)

Taking the logarithm of both sides, we derive the next equa-
tion. Since Pt follows the normal distribution, lnPt follows a
log-normal distribution.

lnPt = lnP0 +

(
µ− σ2

2

)
t+ σWt (4)

Similarly, Rt is given by Eq.(5), which follows the normal
distribution Rt ∼ N

((
µ− σ2/2

)
∆t, σ2∆t

)
.

Rt = ln

(
Pt+1

Pt

)
=

(
µ− σ2

2

)
∆t+ σ∆Wt (5)
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Fig. 2: Histogram of Rt (ETH)

TABLE I: Simulation parameters

µ σ

BTC -1.646155173e-6 0.938358125e-3
ETH -1.189055401e-6 1.201967413e-3

C. Simulation vs. Market Data

In this subsection, the output of the GBM model is com-
pared with actual market data.

Firstly, Pt is simulated every minute for one year, making
∆t = 1. Cryptocurrency prices are retrieved using python
library Historic Crypto 0.1.6 [16]. The sampling period was set
from 2021-11-01T00:00 to 2022-10-31T23:59, and the closing
prices at each minute were used. The values of µ and σ are
shown in Table I.

The simulation results and sample data of Bitcoin (BTC)
and Ethereum (ETH) are shown in Figures 1 and 2, respec-
tively. Although the sample data do not follow a perfect normal
distribution, the distribution is almost symmetrical with respect
to the average R̄t in both cases. By setting an appropriate
threshold and comparing the sample to the threshold, it is
expected that a certain amount of entropy can be extracted
from cryptocurrency prices.

It should be noted that stablecoins are not suitable for
entropy extraction due to their minimal price movement.
Figure 3 presents the distribution of Rt of USDC, a type of
stablecoin. This distribution is far from normal, and is not
reliable as an entropy source.

Due to page limits, only the price of BTC is examined in
the following discussions.

III. DESIGN OF URNG

As stated in the previous section, the market price should
exhibit the appearance of a memory-less random walk if the
market is efficient [10]. This naturally suggests that market
price data can be used as an entropy source for an LFSR-based
URNG. This section describes the design of an LFSR-based
URNG using market price data.
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Fig. 3: Histogram of Rt (USDT)

A. Principles of LFSR-based URNG

An LFSR is a type of PRNG, which is defined as a
shift register whose input is given by a linear function of
its previous state (i.e., feedback polynomial). The period of
an n-bit LFSR becomes maximal (2n − 1), if the feedback
polynomial is selected to be primitive. LFSRs are utilized
in various applications, including communication systems and
built-in-self-test of LSIs. LFSR is also acknowledged as a fast
and low-cost PRNG suitable for hardware implementation.

The operation principle of an LFSR-based URNG is
straightforward. After the (n − 1)-th sampling of the LFSR,
the feedback polynomial is applied S(n) times before the
n-th sampling. The sampling interval S(n) is given by the
following equation, where β is a constant (Base Period) and
α(n) is the fluctuation factor.

S(n) = α(n) + β (6)

In this study, α(n) is derived from Pt or Rt, as stated below.
In the following discussion, the array data contains the time
series of Pt or Rt, and N represents the size of the array. The
array data is used cyclically when n > N .
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Fig. 4: Time-series data at 1 minute time interval from 2021-11-01 to 2022-10-31 (BTC)

Figure 4 presents the time-series data of (a) Pt and (b) Rt.
As can be easily seen, the characteristics of Pt and Rt are
much different. Thus, different methods are required for Pt

and Rt to harvest entropy for URNG.

B. Use of market price

Though Pt in the GBM model follows a normal distribution,
the actual Pt behaves differently. As seen in Fig. 4(a), Pt is
almost consecutive and drifts following a trend. In this case, it
is difficult to extract entropy from the value itself or the upper
digits of Pt. Therefore, we use the least significant bit (LSB)
of Pt as α(n) in the following discussion (Eq.(7)).

α(n) = int
(
data[n mod N ]× 102

)
mod 2 (7)

Since each Pt has two decimal digits under the decimal point,
102 is multiplied before taking its modulo 2.

While it might be possible to extract two ore more bits from
each Pt, it is left for future studies. In this work, we extract
a single bit from each Pt as a baseline of the evaluation.

C. Use of logarithmic return

As seen in Fig. 4(b), Rt fluctuates around its average value
without drift. Though its distribution is not perfectly normal
(Fig. 1(b)), it is almost symmetrical. Thus, we utilize this
symmetry to extract a single bit from each Rt value.

The first idea is to compare Rt with zero (Eq. (8)), while
the second idea uses the average value of Rt instead of zero
(Eq. (9)).

α(n) =

{
1 (data[n mod N ] > 0)
0 (data[n mod N ] < 0)

(8)

α(n) =

{
1
(
data[n mod N ] > R̄t

)
0
(
data[n mod N ] < R̄t

) (9)

2021-11-01

00:00

1 month

……
1 year

1 month

Time

2021-12-01

00:00

2022-01-01

00:00

2022-11-01

00:00

Fig. 5: Rolling window sample period

The above two ideas split the domain into two zones
(quantiles), while we can further split the domain into four
quantiles (Eq. (10) and Eq. (11)).

α(n) =

{
1 (Q1 ≤ data[n mod N ] ≤ Q3)
0 (otherwise)

(10)

α(n) =


0 (data[n mod N ] < Q1)
1 (Q1 ≤ data[n mod N ] < Q2)
0 (Q2 ≤ data[n mod N ] < Q3)
1 (Q3 ≤ data[n mod N ])

(11)

In the above equations, Q1, Q2, and Q3 represent the first
quartile (25th percentile), the second quartile (50th percentile),
and the third quartile (75th percentile), respectively. In Equa-
tions (10) and (11), the expected value of α(n) becomes 0.5.

IV. EVALUATION

A. Diehard test

As in previous studies [4] [6], this study adopts the Diehard
test to evaluate the randomness quality.

The Diehard test [5] consists of 18 individual tests, each
of which outputs 1–100 p-values (313 p-values in total).
If the sequence under test is random, the p-values should
show a uniform distribution between 0 and 1. Although the
overall interpretation of these results is not standardized, this
study follows the evaluation criteria adopted in the previous
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(d) Period 4

Fig. 6: DIEHARD test results on BTC with a 32-bit LFSR

TABLE II: Sample period (BTC)

Period
Period 1 (max ∆P ) 2021-11-01T00:00～2022-10-31T23:59
Period 2 (max σ) 2021-12-01T00:00～2022-11-30T23:59
Period 3 (min ∆P ) 2022-07-01T00:00～2023-06-30T23:59
Period 4 (min σ) 2022-10-01T00:00～2023-09-30T23:59

studies [4] [6]. According to these criteria, the results of the
18 tests are categorized into three groups: PASS, WEAK, and
FAIL.2 In the following discussion, we focus on the number
of FAILs out of the 18 tests.

B. Evaluation periods

Another issue resides in the difference among the sampling
periods; i.e., the market is calm in some periods, while stormy
in other periods. Therefore, we checked the price range ∆P
and the volatility σ of the 1-year period with various start
dates (Fig. 5), and picked up four periods with max ∆P , max
σ, min ∆P , and min σ. These periods (Period 1 to 4), listed
in Table II, are used for the following evaluations.

C. 32-bit LFSR

Figure 6 summarizes the Diehard test results of the 32-bit
LFSR, whose tap sequence is [32, 30, 17, 12, 3, 1] [17]. Four

2For more details, refer to the previous studies [4] [6].

graphs correspond to four periods in Section IV-B and Table
II. The X-axis of each graph corresponds to the Base Period
(β) in Eq. (6), while the Y-axis shows the number of FAILs
in the Diehard test. Five lines correspond to the results where
α(n) is given by Eq.(7)–Eq.(11). The last line (α(n) = 0)
represents the case without fluctuation in the sampling period
S(n).

In any periods, the results of small β yield many FAILs, and
the number of FAILs decreases as β increases. As an LFSR
is a simple PRNG, it cannot pass the randomness test as it is
(i.e., β = 1). However, by applying the feedback polynomial
repeatedly, the randomness quality rises as β increases.

In case of α(n) = 0, the generated sequence cannot pass the
Diehard test even with large β. The sequence of α(n) = 0 is a
fixed-stride sampling of the output of a 32-bit LFSR; even with
its longest period 232−1, a 32-bit LFSR is impossible to pass
the Binary Rank 31x31 and 32x32 tests of the Diehard test.
In contrast, the randomness quality was improved by adding
the fluctuation with Eq.(7)–Eq.(11). For β > 32, it passes the
Diehard test with no FAIL in some cases, though it still yields
some FAILs in other cases.

It is notable that Eq. (10) yields more FAILs than Equations
(8), (9), and (11), where the results of these three equations
are almost comparable.



�

�

�

�

�

��

��

��

��

��

� �� �� �� �	 �� 

 ��

�
�
��

���������	
���

����	� ������

������ �������

������� ������

(a) Period 1

�

�

�

�

�

��

��

��

��

��

� �� �� �� �	 �� 

 ��

�
�
��

���������	
���

����	� ������

������ �������

������� ������

(b) Period 2

�

�

�

�

�

��

��

��

��

��

� �� �� �� �	 �� 

 ��

�
�
��

���������	
���

����	� ������

������ �������

������� ������

(c) Period 3

�

�

�

�

�

��

��

��

��

��

� �� �� �� �	 �� 

 ��

�
�
��

���������	
���

����	� ������

������ �������

������� ������

(d) Period 4

Fig. 7: DIEHARD test results on BTC with a 40-bit LFSR

It is inferable from the previous study [4] that longer LFSRs
will result in higher randomness quality. Thus, we examine a
40-bit LFSR in the next section.

D. 40-bit LFSR

Figure 7 presents the Diehard test results of the 40-bit LFSR
(tap sequence [40, 29, 21, 10] [18]), where the least significant
32 bits are used as a URN in each sample.3 Compared to Fig.
6, it is evident that the number of FAILs decreased. Notably,
the URNG with a 40-bit LFSR can pass the Diehard test even
without fluctuation (α(n) = 0), although it is a PRNG rather
than a URNG. The qualities of Eq. (7) with Pt and Eq. (8)–
(11) with Rt are almost comparable and acceptable.

However, there are still some FAILs left in β ≥ 32. Most of
these FAILs were caused by OPERM5 test, which is known
to be buggy [19] and often reports peculiar FAILs [4]. In this
study, FAILs of OPERM5 are disregarded, following Brown’s
advice [19]. Except for OPERM5, there were only five FAILs
summarized in Table III) for (β ≥ 32). These FAILs appear
in various periods with different equations, and no specific
tendency is observed. Moreover, it is expected that these FAILs
will diminish by using a longer LFSR [4].

3Upper bits are concealed as in Masaoka et al. [3]

TABLE III: FAILed tests in Figure 7 (β ≥ 32) except for
OPERM5 test.

Period Eq. β FAILed test
Period1 (7) 64 Squeeze
Period2 (8) 59 Overlapping Sums
Period3 (7) 37, 45, 64 Overlapping Sums
Period4 (9) 32 Overlapping Sums

E. Summary of Evaluation

Eq. (7) with Pt yields almost acceptable randomness qual-
ity; particularly, no FAILs were observed with 32-bit LFSR
for β > 32. Since its implementation is simple and straight-
forward, it is recommended for use with Pt.

Eq. (10) and (11) are more complex than Eq. (8) and (9),
while the randomness quality is slightly lower or equal. In
short, Eq. (10) and (11) have no evident advantages over Eq.
(8) and (9). In this sense, there are no special reasons to select
Eq. (10) and (11).

Eq. (8) and (9) present similar qualities, but it might be
caused by the fact that R̄t ∼ 0 in our evaluation conditions.
Considering the generality, the use of Eq. (9) might be more
reasonable.



V. CONCLUSION

This study examined a URNG based on cryptocurrency
prices, and presented the evaluation results of its randomness
quality. The design of this URNG is based on an LFSR-based
URNG [3] [4] [6], where the fluctuation of sampling periods is
derived from the cryptocurrency price Pt and its logarithmic
return Rt. The evaluation was performed for four sampling
periods based on volatility σ and price range ∆P .

From our evaluation results on BTC, we suggest to use a
40-bits or longer LFSR and the fluctuation of sampling periods
to be determined by (1) the least significant bit of Pt or (2)
the comparison of Rt with its average value.

Our future work includes (1) the evaluation using the
NIST test, (2) the investigation of other cryptocurrencies, and
(3) the examination of new methods to harvest entropy in
cryptocurrency price data.
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