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ABSTRACT

This paper presents a static load balancing scheme for a
parallel PDE solver targeting heterogeneous computing
clusters. The proposed scheme adopts a mathematical
programming approach and optimizes the execution
time of the PDE solver, considering both computation
and communication time. While traditional task graph
scheduling algorithms only distribute loads to processors,
the proposed scheme adopts a combined approach of iter-
ative data partitioning and load distribution to make total
execution time minimal. The approximation algorithm
presented here shows good accuracy and is solvable in
practical time.

KEYWORDS: Optimization, Load balancing, Schedul-
ing, Cluster computing

1 INTRODUCTION

Many important scientific and technological applications
are modeled and solved as partial differential equations
(PDE). For the efficient processing of the PDE system, var-
ious parallel PDE solvers have been researched for years
(e.g. //ELLPACK[1], PETSc[2], CTADEL[3], PDE2[4]).
However, only a limited degree of static load balancing has
been implemented in the preceding parallel PDE systems.

Many preceding systems tried to equalize the com-
putation time, while minimizing the communication time.
Such a scheme is simple and easy to implement, but does
not guarantee that the total execution time is minimal,
particularly when the communication time is substantial.
To optimize the execution time totally, it is essential to
consider both calculation and communication as a whole.
While there are some studies that focused on this scheme
[5] [6], they only discussed heuristic approximation algo-
rithms, because this kind of optimization is generally a hard
computation problem and has been regarded as intractable.
One of the contributions of the present research is that we
model the problem as a combinatorial optimization prob-
lem and show that it is solvable in practical time. No par-

∗Presently with Toyota System Research Inc.

allel PDE systems have adopted this kind of approach.
The second contribution of this paper is that it dis-

cusses an optimization method suited for heterogeneous
clusters. Preceding studies have scarcely considered het-
erogeneous computer clusters, which consists of non-
uniform processors. Heterogeneous clusters are very
widespread and an important target architecture, as they
are found in every office and lab as various PCs connected
in a LAN. On the other hand, they are an essentially diffi-
cult target for optimization, because non-uniformity of pro-
cessors results in a vast number of free variables in opti-
mization. It is another difficulty of heterogeneous clusters
that relatively slow connections often make communica-
tion time dominant over calculation time. In some cases,
you get worse performance by using more processors be-
cause of the increase of communication time. Let us call
this paradox “excessive use of processors” in this paper.

One of the authors has been involved in developing
a parallel PDE solver for NSL [7]. NSL is a numeri-
cal simulation system that automatically generates parallel
programs for multicomputers from a high level description
of PDE. NSL adopts an explicit finite difference method
(FDM) based on a boundary fitted coordinate system and
multi-block method.

Ichikawa et al. [8] showed that the static load bal-
ancing of this PDE solver could be modeled as a combina-
torial optimization problem, considering both calculation
time and communication time. In that paper [8], the target
architecture was assumed to be distributed memory parallel
processors or homogeneous clusters that consist of uniform
processing elements (PEs). This optimization problem was
shown to be solvable in practical time by an off-the-shelf
PC for systems consisting of hundreds or more PEs.

Ichikawa and Yamashita [9] extended the scheme for
heterogeneous clusters. Under the condition of a sufficient
number of processors, it was shown that an adaptive recur-
sive partitioning scheme gives a good load balance in prac-
tical time. It is also reported that the performance degrada-
tion caused by excessive use of processors can be avoided
by selecting the most adequate subset of processors [10].
These results are encouraging, but some problems remain.
When the number of processors is insufficient against the
complexity of a given PDE domain, the preceding scheme
[9][10] cannot give a good load balance. In such a case,
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Figure 1. Computational Domain

load coalescing is required in addition to data partitioning.
This paper presents a combined approach of iterative

partitioning and load coalescing. Section 2 outlines the
model of the PDE solver and our new scheme. In section
3, some heuristics for load coalescing are examined. Sec-
tion 4 describes the iterative partitioning scheme and the
evaluation results.

2 OPTIMIZATION MODEL OF PDE
SOLVER

In NSL [7], a physical domain is mapped to a computa-
tional domain, which consists of mutually connected rect-
angular blocks. Each block is an array of grid points, on
which differential equations are calculated. Each calcula-
tion of the differential equations can be executed in parallel
due to the nature of explicit FDM, followed by communi-
cations to exchange data across the connected borders. The
parallel PDE solver in NSL invokes this set of operations
iteratively. Figure 1 illustrates an example computational
domain that consists of five blocks.

Let the number of blocks be m, and the number of
processors be n. The relationship m � n was assumed
in preceding studies [8][9][10]. This assumption is valid
in such cases that the problem is simply structured but con-
tains so many grid points that many processors are required,
which is often seen in real-world applications. In these
cases, static load balance is realized by partitioning each
block into pieces (subblocks), each of which is dispatched
to a processor. Each processor handles only one subblock
to suppress communication as much as possible.

However, there are still many applications that require
m ≈ n or m > n. In such cases, each processor has to han-
dle one or more subblocks, according to its performance.
Let us examine Figure 1 as an example. The domain of
Figure 1 includes five blocks (m = 5). Provided that we
have two processors (n = 2), we can distribute these blocks
(B1, ..., B5) between two processors (P1 and P2) to balance
computational loads. Note that the best of 32 possible dis-
tributions (generally nm ways) must be chosen to get the
best load balance. Section 3 describes how to do this.

Figure 2 shows an example of load distribution.
The communication from Bi to Bj is counted as (i, j)
in the figure. Though four bidirectional communica-
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Figure 3. Improved Load Balance

tions are required in Figure 1, four communications
(1, 5), (5, 1), (3, 4), and (4, 3) are not counted in Figure 2,
because (B1, B5) and (B3, B4) are allocated on the same
processor. As variables can be shared freely on the same
processor, no additional communication cost is required.

This kind of optimization problem is very popular as
a task graph scheduling problem, and has been thoroughly
researched (see Kwok [11] for recent survey). However,
the sole task graph scheduling cannot give a good load bal-
ance for our problem when m ≈ n holds or when there is
much difference in block size. Figure 3 (left) illustrates an
unsuitable case, in which m = n = 2 holds and block size
differs much. Block B2 is too big for one processor, con-
sequently becoming the bottleneck. In such a case, split-
ting B2 into two blocks (B3, B4) is a good idea to shorten
total execution time (Figure 3 right).1 Similar situations
can occur even when all blocks are of the same size, be-
cause the performance of each processor varies in heteroge-
neous clusters. This is the reason why we need an approach
that combines load balancing and data partitioning. The
task scheduling approach is general but not all-powerful.
We can derive better performance by exploiting problem-
specific criteria.

The next section examines some algorithms with
which to distribute blocks among processors for a given
domain structure. Then, Section 4 describes the iterative
partitioning scheme that is used in combination with load
distribution algorithms.

1Though new communication sometimes emerges with such partition-
ing, the communication between B1 and B4 is suppressed in this case,
because they are allocated on the same processor.



3 LOAD DISTRIBUTION ALGORITHMS

3.1 FORMULATION

Now, we are ready to formulate the model as an optimiza-
tion problem. Let T be the execution time of one itera-
tion of PDE solver. Our purpose is to minimize T for
a given domain structure by partitioning and distributing
blocks among available processors.

T = max
i

Ti (i = 1, ..., n), (1)

Ti =
∑

Bj∈Gi

(Taj + Tcj). (2)

Ti is the execution time of the i-th processor (Pi). Ti is
given by the sum of the time for each block Bj in Gi,
where Gi is the set of blocks dispatched to Pi. Taj and
Tcj are the calculation and communication times of Bj ,
respectively. Taj and Tcj are estimated as the linear func-
tion of the number of grid points involved.

Taj = Ctai Saj + Dtai, (3)

Tcj,l = Ctc Scj,l + Dtc, (4)

Tcj =
∑

Bl /∈Gi

Tcj,l. (5)

Here, Saj is the number of grid points of Bj . Ctai and
Dtai are coefficients that are dependent on the perfor-
mance of Pi. Scj,l is the number of grid points involved
in the communication from Bj to Bl. Ctc and Dtc are
communication coefficients of the network.

Though it is very easy to calculate T for a given set
of G = {Gi | i = 1, ..., n}, we have to check every pos-
sible G to find the optimal T , which takes O(nm) time.
As is well known, this kind of enumeration approach is in-
tractable. The branch-and-bound method [12] and heuris-
tic approximation algorithms are hence adopted here. Find
more details for these techniques in the preceding reports
[8][9][10].

3.2 HEURISTIC ALGORITHMS

This section introduces five simple heuristic algorithms. As
space is limited, only the core idea of each algorithm is
described.

Approx1 dispatches blocks in a greedy manner, consider-
ing calculation time only. Approx1 first sorts blocks
according to their size in decreasing order, then itera-
tively dispatches the largest block to the most lightly
loaded processor at that time.

Approx2 first sorts the blocks in the same manner as Ap-
prox1. It then iteratively dispatches the largest block
to the processor that will be most lightly loaded after
the dispatch. Approx2 considers the communication
time to the blocks that are already dispatched. The

Table 1. Parameters

Parameter Value
Ctai 1.0
Dtai 0.1
Ctci 20.0
Dtci 0.1

communication time to the blocks that are not allo-
cated yet is ignored.

Approx3 first sorts the blocks in the same manner as Ap-
prox1. It then iteratively dispatches the largest block
to the processor that minimizes the maximum tenta-
tive execution time of each processor. Approx3 con-
siders the communication time in the same manner as
Approx2.

Approx4 sorts the blocks considering both block size
and possible communication time. It then dispatches
blocks in the same manner as Approx3.

Approx5 first selects the processor Pi that is most lightly
loaded at that point. Then, it calculates the priority
factor Qj for each block, and selects the block that
has the maximal Qj value for the next dispatch.

Qj = CtaiSaj + Dtai +
∑

Bl∈gi

(Ctc Scj,l + Dtc)

−
∑

Bl /∈ḡ∪gi

(Ctc Scj,l + Dtc) (6)

Here, gi is the tentative set of blocks that is dispatched
to Pi. The blocks not allocated yet are represented
by ḡ. Qj gets larger when the block is large or the
communication is suppressed (if allocated on the same
processor). Qj gets smaller if the communication
emerges by dispatching Qj to Pi.

In addition to these approximation algorithms, lo-
cal search technique [12] is examined. After dispatching
all blocks by approximation algorithm, we can examine
whether the possible swap of two blocks improves the total
execution time. A local search iterates such swaps while
improvement is derived.

Figures 4 and 5 illustrate various aspects of the pro-
posed approximation algorithms. In these figures, the num-
ber of processors is four (n = 4), and all processors are
equivalent (homogeneous environment is assumed). The
computational domain consists of m blocks, and is ran-
domly generated to have a tree topology. Each block is
square, and contains 100 to 10000 grid points. In Figures 4
and 5, each point represents the average result of 20 trials.
Other parameters are listed in Table 1.

Figure 4 presents the accuracy of approximation algo-
rithms (Approx1, ..., Approx5) and their derivatives with
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Figure 4. Accuracy of Approximation Algorithms

local search (+Local). The best results selected from these
algorithms is plotted as Best Effort in Figure 4. Accu-
racy is defined by the ratio of approximated T to the op-
timal T derived by combinatorial optimization (optimiza-
tion). As is easily seen, Approx5 shows good accuracy.
Approx5+Local is slightly better than Approx5 in accuracy,
but takes a far longer time to finish (more than 100 times),
as seen in Figure 5. All others (Approx1, ..., Approx4)
show worse accuracy than Approx5. With local search,
their accuracy improves to almost equal Approx5, but far
more time is required to finish.

From these observations, we choose Approx5 for our
research. The simulations for heterogeneous environment
(omitted here for lack of space) show similar trends, except
that all algorithms require several times more time to finish.

3.3 COMPARISON WITH TASK GRAPH
SCHEDULING ALGORITHM

The algorithms described in Section 3 simply dispatch
blocks to processors without any partitioning.2 That is,
general task graph scheduling algorithms can achieve an
equivalent result in place of our Approx5 algorithm. We
therefore examined CP/DT/MISF algorithm [13] as a pos-
sible competitor. CP/DT/MISF is a heuristic task graph
scheduling algorithm that is derived from CP/MISF (Crit-
ical Path / Most Immediate Successors First), taking data
transfer cost (DT) into consideration.

2Partitioning is described in Section 4.
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Figure 5. Elapsed Time for Approximation

Table 2. Parameters

Parameter Value Parameter Value
Cta0, Cta1 0.25 Dtai 0.1
Cta2, Cta3 0.33 Ctc 100.
Cta4, Cta5 0.5 Dtc 10000.
Cta6, Cta7 1.0

Figure 6 shows the simulation results of
CP/DT/MISF, Approx5, and Approx5+Local for het-
erogeneous clusters. In this simulation, the computational
domain is constructed by m square blocks connected
in a random tree topology. The edge length b of each
block is also randomly generated as 10 ≤ b ≤ 800.
The target cluster consists of 8 heterogeneous processors
(n = 8). The performance ratios of the PEs are set to
4 : 4 : 3 : 3 : 2 : 2 : 1 : 1. Each point in the figure
represents the average value of 20 trials. Other parameters
are listed in Table 2.

As seen in Fig. 6, the accuracy of CP/DT/MISF is in-
ferior to Approx5 for a heterogeneous environment, though
the elapsed time of CP/DT/MISF is almost the same as Ap-
prox5. Approx5+Local shows far better accuracy than ei-
ther CP/DT/MISF or Approx5, but also requires more time
than either of them.

We also examined the cases of homogeneous clusters,
and found that CP/DT/MISF can not outperform Approx5,
though it shows almost equal accuracy and elapsed time as
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Figure 6. Approx5 vs. CP/DT/MISF

Approx5.
Consequently, we found no merit in adopting

CP/DT/MISF in our research. CP/DT/MISF is targeted for
general task graphs, while Approx5 and Approx5+Local
are more problem-specific and better for our purpose.

4 ITERATIVE PARTITIONING

As shown in Figure 3, load balance can be improved by
partitioning big blocks into smaller ones. If one partition is
not enough, we can apply this procedure iteratively. Note
that this kind of partitioning can create new communica-
tion, which tends to increase execution time T after all; we
therefore have to stop iterative partitioning at the optimal
(or sub-optimal) point.

We have to decide the following three matters to real-
ize the iterative partitioning scheme.

• How to split the selected block?

• Which block should be selected for partitioning?

• When should we stop iteration?

Let us examine the first question. There are many
ways to split a block into two; we must decide the direc-
tion, equally or inequally, etc. The advantages and disad-
vantages of various partitioning schemes are already dis-
cussed in preceding papers [9] [10]. Here, for simplic-
ity, we divide a block equally into two rectangular sub-
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Figure 7. Iterative Improvement

blocks, in the manner that makes the communication min-
imal. The choice of a better partitioning scheme is left for
future study.

For the second question, the simplest answer is to
choose the biggest block. However, this is neither thor-
ough nor good enough (just think you have two or more
blocks of the same size). A more elegant way is to exam-
ine each block as a candidates for partitioning and take one
that makes T minimal after partitioning. We continue this
procedure iteratively, while we improve T . Let us call this
method Improve0.

Improve0 still does not work well enough, because
the figure of objective function T is jagged and has many
local minima. A usual countermeasure for local minima
is to continue iterative improvement even if T increases a
couple of times. Let ImproveN be the method that allows
the increase of T at most N times. If we can find a bet-
ter tentative solution in N partitioning steps, we update the
tentative record to the new solution, and continue iteration.
If we cannot update the current record in N steps, we ter-
minate the iteration and return the tentative record as the
solution.

Figure 7 presents evaluation results of iterative im-
provement. For the load distribution algorithm, Approx5 is
adopted. Simulation conditions are almost the same as in
Section 3.3, except that the edge length b of each block is
randomly generated as 10 ≤ b ≤ 3200. The value 3200
was selected to make the deviation of block sizes suffi-
ciently big. Other parameters are listed in Table 2 of Sec-
tion 3.3.

In the upper graph of Figure 7, the optimized parallel



execution time T is shown, normalized by the value that
is derived from a single fastest processor (scalar execution
time). When m ≤ n = 8, Approx5 does not work well
because big blocks tend to be bottlenecks. Approx5+Local
scarcely improves things because swap of blocks does not
resolve bottlenecks. Approx5+Improve0 works well by
the effect of iterative partitioning, but is not good enough
because Improve0 is easily trapped at local minima. Im-
prove1, Improve2, and Improve4 show better performance
than Improve0, but do not differ so much from each other.
The apparent lower bound of the normalized execution time
is 0.2, because the performance ratio of the fastest proces-
sor to all processors is given by 4 / (4+4+3+3+2+2+1+1).
From this point of view, Improve1 or Improve2 is regarded
as good enough. Approx5+ImproveN shows a remarkable
achievement, compared with the preceding method [9][10]
that could not provide a good load balance in the area of
m ≥ 4 (m ≈ n or m ≥ n),

The lower graph of Figure 7 shows the elapsed time
of each approximation algorithm on a Pentium-II 400 MHz
processor. Approx5 is extremely fast, but all other algo-
rithms also finish in practical time.

5 CONCLUSION

This paper presented a combined approach of data parti-
tioning and load distribution for a parallel PDE solver. Our
simulation results show that Approx5+Improve1 (or Ap-
prox5+Improve2) is a practical choice for our purpose.

Another important item, which was not mentioned in
this paper, is an algorithm to avoid the excessive use of
processors. This problem comes down to finding the most
adequate subset of processors, as examined in the preced-
ing papers. It is difficult to examine every possible subset,
but O(n) greedy approximation algorithm worked well in
past studies [8][9][10]. We expect this kind of algorithm
would work well also for the present case. This work is
still in progress, and we intend to confirm the findings in
the near future.
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