

Presented in the 16th IASTED International Conference APPLIED INFORMATICS (23 Feb. 1998 at Garmisch-Partenkirchen, Germany)

MATHEMATICAL PROGRAMMING APPROACH FOR STATIC
LOAD BALANCING OF PARALLEL PDE SOLVER

SHUICHI ICHIKAWA

Department of Knowledge-based Information Engineering,
Toyohashi University of Technology

Toyohashi 441-8580, JAPAN
ichikawa@tutkie.tut.ac.jp

TAKAMITSU KAWAI , TOSHIO SHIMADA
Department of Information Electronics,

School of Engineering, Nagoya University
Nagoya 464-8603, JAPAN

{kawai,shimada}@nuee.nagoya-u.ac.jp

Abstract

A static load-balancing scheme is discussed for nu-
merical simulation system NSL, which automatically gen-
erates parallel solver of partial differential equations, PDE,
from high level description of problem. NSL partitions
computational domain into multiple blocks, and allocates
processors optimally for each block in accordance with
computation and communication cost. This allocation
problem is formulated as a combinatorial optimization
problem, and solved by branch-and-bound method.
Though it is impractical to solve large problems by this
method because of combinatorial explosion, this paper
also describes an effective method to derive sub-optimal
solution in practical time by limiting search space. The
error of this approximation is less than 15% under rea-
sonable condition. Elapsed time for combinatorial optimi-
zation is measured in numerical simulations to induce the
estimation equation. The method presented here is widely
applicable by adapting evaluation function for each pur-
pose.

1. INTRODUCTION

Authors have been developing a numerical simula-

tion language NSL [1], by which parallel simulation pro-
grams can be automatically generated from high level de-
scription of PDE (Partial Differential Equations) problems.
There are many parallel processing systems for PDE (e.g.
[2][3][4]) but only sub-optimal static load balancing has
been implemented, because it is a very difficult combina-
torial optimization problem [5][6].

There are researches on parallelizing compilers that
optimize execution time considering both computation and
communication. In particular, PARADIGM compiler [7]
optimizes execution time by using convex programming
[8][9]. However, the estimation model in PARADIGM is
still too much simplified and the derived solution is
sub-optimal, because optimization problem is relaxed to
continuous domain to make the problem easy to solve.
Contrary, a combinatorial optimization problem is solved
in our research to derive the optimal solution in discrete
domain. Such method is strongly desired for maximal
performance and for evaluation of approximation algo-
rithms on an absolute scale.

The purpose of this research is to optimize the exe-
cution time of parallel PDE solver, taking both computa-
tion and communication into consideration. In the follow-
ing sections, domain partitioning and processor allocation
problems are formalized as a combinatorial optimization
problem, and solved by branch-and-bound method.

2. MODEL OF COMPUTATION

Two notable features of NSL are boundary-fitted
coordinate system and multi-block method to describe
physical domain. Physical domain with complicated
boundary is divided into multiple components, each of
which is mapped to a rectangular computational domain
(block) topologically connected each other (Fig. 1). By
this mapping, boundary condition can be precisely given
and local grid control gets easier. From the computational
point of view, rectangular computational domain is pref-
erable for high-performance processing with vector and
parallel processors. To utilize high degree of
data-parallelism, explicit scheme is used in NSL to solve
PDE. In explicit scheme, calculation of each node can be
performed in parallel, followed by communication to ex-
change the values.

Each block is partitioned into congruent rectangular
sub-blocks (see Fig. 2), which are distributed among
processors for parallel computation, causing communica-
tions between adjacent sub-blocks on their borders. This
communication latency can be overlapped with calculation
by properly arranging the order of nodes in calculation.
Processor first calculates border part, then sends them out
by non-blocking communication, and then calculates the
rest of nodes.

1

2

3

Physical domain

1

2

3

Computational domain

FIG.1 PHYSICAL AND COMPUTATIONAL DOMAIN

Presented in the 16th IASTED International Conference APPLIED INFORMATICS (23 Feb. 1998 at Garmisch-Partenkirchen, Germany)

Communication latency is hard to estimate, because
it depends on such factors as network implementation,
processor allocation, and network contention. In this paper,
parallel computer with uniform processors and uniform
network is assumed to keep optimization problem simple.
Hence physical allocation of processors is temporary ig-
nored. Dynamic aspects of network (e.g. contention) are
also ignored here. With these simplifications, the problem
is formulated as finding the best allocation of n equivalent
processors among m distinguishable blocks to minimize
execution time. This simple optimization problem still
involves nCm combinations, i.e. O(nm) search space.

Note that NSL can keep the number of blocks (m)
relatively small by using boundary-fitted coordinate sys-
tem. On the other hand, we are usually interested in large-
scale parallel computer (big n). Therefore, the relationship

nm << is implicitly assumed in the following discussion.

3. ESTIMATION OF EXECUTION TIME

This section outlines how to estimate execution time
when a processor allocation is given. The evaluation func-
tion T is the execution time for iteration. Let iT be the
execution time of the i-th block iB , and in be the number
of processors allocated to iB . iB is partitioned into in
congruent rectangular sub-blocks (iBs), one for each of

in processors. Remind that iBs is not uniquely deter-
mined, because in has generally many way of factoriza-
tion. We have to choose the best factorization of in that
makes iT minimal.

Under these conditions, iT is given by

),(max ii
i

iii TcTaTsTbT ++=

where iTb is the calculation time for border part of iBs ,

iTa is the calculation time for the rest of iBs , iTs is
the setup time for communication of iBs , and iTc is
communication time of iBs . In this paper, all of iTb ,

iTa , and iTs are simply assumed to be the linear func-
tion of the number of corresponding nodes. iTc depends
on various factors and can appear as various kind of func-
tion, but this paper only deals with an illustrative example
such as latency is monotonically increasing function of

in and bandwidth is constant. Other kind of iTc is also
possible and feasible for our method.

With these notations, the whole allocation problem
is formulated as follows.

Minimize i
i
TT max=)10(−≤≤ mi

Subject to ∑
−

=

≥
1

0

m

i
inn

4. BRANCH-AND-BOUND

 As in many combinatorial optimization problems,
branch-and-bound method is adopted to limit search space.
Suppose that we have a temporal feasible solution T . iT
takes the minimum value at intermediate in , because

iTa monotonically decreases and iTc monotonically
increases when in gets larger (Fig. 3). Therefore, lower
and upper bounds of each block are derived from T .
The real iT is discrete and jaggy, but instead we can use
the lower bound of iT that is continuous and smooth,
which is derived by relaxation.

It is important for branch-and-bound method to get a
good temporal solution earlier, because better temporal
solution induces tighter bound that makes search space
drastically small. So, it is a good idea to use an approxi-
mation algorithm at the first stage of optimization to cut
hopeless branch roughly. The next section describes a
simple and effective approximation algorithm.

5. APPROXIMATION ALGORITHM

It is essential for approximation algorithm to find a
feasible sub-optimal solution in very short time. It is also
desirable to give high-quality solutions, hopefully with
performance guarantee. This section presents an approxi-
mation strategy, in which the upper limit in is set for
search of in . The basic idea is to reserve the share of
processors for each block, and permit to discard surplus.
Let iH and iW be the height and width of iB , then

in is defined by the following equation.

1)(
1

0

+











−= ∑

−

=

m

i
iiiii WHWHmnn

Searching between 1 and in , the approximated solution
of in is that makes iT minimal. Repeating this proce-
dure for all blocks, a feasible sub-optimal allocation is
derived in O(n) time. This is negligible compared to O(nm)
search time for optimal allocation, hence applicable to
large problems. The quality of derived sub-optimal solu-
tion is presented in the next section.

Time
Ti

Tai

Tci

_
T

Lower bound

ni

Upper bound

FIG. 3 FIND UPPER AND LOWER BOUNDS FROM

SUBOPTIMUL SOLUTION T

Block

FIG. 2 PARTITIONING A BLOCK INTO SUB-BLOCKS

Sub-block

Presented in the 16th IASTED International Conference APPLIED INFORMATICS (23 Feb. 1998 at Garmisch-Partenkirchen, Germany)

6. EVALUATION

This section shows the results of numerical simula-
tions. In simulations, three static load-balancing schemes
are evaluated. The first is Best, which is the optimal allo-
cation derived by combinatorial optimization. The second
is Approx, which is the approximation derived by the
method in the previous section. The last is Naive, in which
every block is equally partitioned and distributed to all n
processors. Naive is the best to balance the calculation,
though accompanied by massive communication among
processors. Computational domains were randomly gen-
erated, and the result is the arithmetic mean of 100 trials,
normalized by the Best value. Simulation parameters are
set to typical values in commercial parallel processors.

Fig. 4 shows the effect of using larger parallel com-
puters in case m is 8. Approx and Best is far better than
Naive, because Naive incurs heavy communication latency.
The error of Approx against Best is less than 14.8%
(32≥n). Fig. 5 shows the effect of using more blocks on
64 processors. In most cases, Best and Approx is a few
times better than Naive. When m is small, Best and Naive
is similar because each block is distributed to many proc-
essors, which causes heavy network traffic. When m is
comparable to n, Best scores bad because it has only lim-
ited choices for load balancing. The error of Approx is less
than 14.6% (16≤m). In both cases, mn 4≥ seems sat-
isfactory condition for Approx algorithm.

Elapsed time for optimization)(exT was measured
in numerical simulations to induce the estimation equation
shown below.

24.5log)18.1084.0(log 1010 −+= nmTex

Unit is second, and the platform is Intel Pentium-Pro 200
MHz with FreeBSD. exT is almost proportional to nm as
predicted. From this equation, we can see the extent of m
and n that can be solved in realistic time.

7. CONCLUSION

Our research enabled the optimal processor alloca-
tion for practical computation. Although it is still imprac-
tical to solve very large optimization problem because of
combinatorial explosion, our approximation algorithm can
find good sub-optimal allocation in negligible time. One
of the obvious merits of our approach is that the quality of
such approximation algorithm can be verified quantita-
tively by comparing to the optimal solution. Another merit

is wide applicability to problems by adapting evaluation
function. Our evaluation function is not necessarily to be
convex or contiguous. Measurement results can be used
for evaluation function in optimization.

Evaluations on real parallel computer platforms are
now under way to confirm and to improve our optimiza-
tion scheme. Physical allocation of processors should be
considered in optimization process. Dynamic aspects in-
cluding network contention and collision should also be
considered. It is also desirable to handle distributed com-
putational environment, which consists of non-uniform
processors and relatively slow networks.

References

[1] T. Kawai, S. Ichikawa, and T. Shimada, NSL: High Level

Language for Parallel Numerical Simulation, Transactions of
Information Processing Society of Japan, Vol. 38, No. 5, pp.
1058-1067 (1997).

[2] E. N. Houstis and J. R. Rice, Parallel ELLPACK: A Devel-
opment and Problem Solving Environment for High Per-
formance Computing Machines, In Gaffney, P. W. and Hous-
tis, E. N. (eds.), Programming Environments for High-Level
Scientific Problem Solving, Elsevier Science Publishers B. V.,
pp. 229-243 (1992).

[3] K. Suzuki, et al., DISTRAN system Implementation on Par-
allel Computers, In Joint Symposium on Parallel Processing
'91, pp. 301-308 (1991).

[4] T. Okochi, C. Konno, and M. Igai, High Level Numerical
Simulation Language DEQSOL for Parallel Computers,
Transactions of Information Processing Society of Japan, Vol.
35, No. 6, pp. 977-985 (1994).

[5] N. Chrisochoides, E. Houstis, and J. Rice, Mapping Algo-
rithms and Software Environment for Data Parallel PDE It-
erative Solvers, Special Issue of the Journal of Parallel and
Distributed Computing on Data-Parallel Algorithms and
Programming, Vol. 21, No. 1, pp. 75-95 (1994).

[6] N. Chrisochoides, N. Mansour, and G. Fox, Comparison of
optimization heuristics for the data distribution problem,
Journal of Concurrency Practice and Experience, Vol. 9, No.
5, pp. 319-344 (1997).

[7] P. Banerjee et al., The PARADIGM Compiler for Distrib-
uted-Memory Multicomputers, IEEE Computer, Vol. 28, No.
10, pp. 37-47 (1995).

[8] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, A Convex
Programming Approach for Exploiting Data and Functional
Parallelism on Distributed Memory Multicomputers, In Pro-
ceedings of the 23rd International Conference on Parallel
Processing, St. Charles, IL, pp. II:116-125 (1994).

[9] S. Ramaswamy, Simultaneous Exploitation of Task and Data
Parallelism in Regular Scientific Applications, Ph.D. Thesis,
Department of Electrical and Computer Engineering, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL (1996).

0

1

2

3

4

0 16 32 48 64

m

T
 (

B
es

t =
 1

)

Naive
Approx
Best

FIG. 5 EXECUTION TIME ON 64 PROCESSORS

0

4

8

12

0 64 128 192 256

n

T
 (

B
es

t =
 1

)
Naive
Approx
Best

FIG.4 EXECUTION TIME ON PARALLEL PROCESSORS

	Abstract
	INTRODUCTION
	MODEL OF COMPUTATION
	ESTIMATION OF EXECUTION TIME
	BRANCH-AND-BOUND
	APPROXIMATION ALGORITHM
	EVALUATION
	CONCLUSION

