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Abstract 
 

A static load-balancing scheme is discussed for nu-
merical simulation system NSL, which automatically gen-
erates parallel solver of partial differential equations, PDE, 
from high level description of problem. NSL partitions 
computational domain into multiple blocks, and allocates 
processors optimally for each block in accordance with 
computation and communication cost. This allocation 
problem is formulated as a combinatorial optimization 
problem, and solved by branch-and-bound method. 
Though it is impractical to solve large problems by this 
method because of combinatorial explosion, this paper 
also describes an effective method to derive sub-optimal 
solution in practical time by limiting search space. The 
error of this approximation is less than 15% under rea-
sonable condition. Elapsed time for combinatorial optimi-
zation is measured in numerical simulations to induce the 
estimation equation. The method presented here is widely 
applicable by adapting evaluation function for each pur-
pose. 

 
1. INTRODUCTION 

 
Authors have been developing a numerical simula-

tion language NSL [1], by which parallel simulation pro-
grams can be automatically generated from high level de-
scription of PDE (Partial Differential Equations) problems. 
There are many parallel processing systems for PDE (e.g. 
[2][3][4]) but only sub-optimal static load balancing has 
been implemented, because it is a very difficult combina-
torial optimization problem [5][6]. 

There are researches on parallelizing compilers that 
optimize execution time considering both computation and 
communication. In particular, PARADIGM compiler [7] 
optimizes execution time by using convex programming 
[8][9]. However, the estimation model in PARADIGM is 
still too much simplified and the derived solution is 
sub-optimal, because optimization problem is relaxed to 
continuous domain to make the problem easy to solve.  
Contrary, a combinatorial optimization problem is solved 
in our research to derive the optimal solution in discrete 
domain. Such method is strongly desired for maximal 
performance and for evaluation of approximation algo-
rithms on an absolute scale. 

The purpose of this research is to optimize the exe-
cution time of parallel PDE solver, taking both computa-
tion and communication into consideration. In the follow-
ing sections, domain partitioning and processor allocation 
problems are formalized as a combinatorial optimization 
problem, and solved by branch-and-bound method. 

 
2. MODEL OF COMPUTATION 
 

Two notable features of NSL are boundary-fitted 
coordinate system and multi-block method to describe 
physical domain. Physical domain with complicated 
boundary is divided into multiple components, each of 
which is mapped to a rectangular computational domain 
(block) topologically connected each other (Fig. 1). By 
this mapping, boundary condition can be precisely given 
and local grid control gets easier. From the computational 
point of view, rectangular computational domain is pref-
erable for high-performance processing with vector and 
parallel processors. To utilize high degree of 
data-parallelism, explicit scheme is used in NSL to solve 
PDE. In explicit scheme, calculation of each node can be 
performed in parallel, followed by communication to ex-
change the values.  

Each block is partitioned into congruent rectangular 
sub-blocks (see Fig. 2), which are distributed among 
processors for parallel computation, causing communica-
tions between adjacent sub-blocks on their borders. This 
communication latency can be overlapped with calculation 
by properly arranging the order of nodes in calculation. 
Processor first calculates border part, then sends them out 
by non-blocking communication, and then calculates the 
rest of nodes.  
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FIG.1 PHYSICAL AND COMPUTATIONAL DOMAIN 
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Communication latency is hard to estimate, because 
it depends on such factors as network implementation, 
processor allocation, and network contention. In this paper, 
parallel computer with uniform processors and uniform 
network is assumed to keep optimization problem simple. 
Hence physical allocation of processors is temporary ig-
nored. Dynamic aspects of network (e.g. contention) are 
also ignored here. With these simplifications, the problem 
is formulated as finding the best allocation of n equivalent 
processors among m distinguishable blocks to minimize 
execution time. This simple optimization problem still 
involves nCm combinations, i.e. O(nm) search space. 

Note that NSL can keep the number of blocks (m) 
relatively small by using boundary-fitted coordinate sys-
tem. On the other hand, we are usually interested in large- 
scale parallel computer (big n). Therefore, the relationship 

nm <<  is implicitly assumed in the following discussion. 
 

3. ESTIMATION OF EXECUTION TIME 
 

This section outlines how to estimate execution time 
when a processor allocation is given. The evaluation func-
tion T  is the execution time for iteration. Let iT  be the 
execution time of the i-th block iB , and in  be the number 
of processors allocated to iB . iB  is partitioned into in  
congruent rectangular sub-blocks ( iBs ), one for each of 

in  processors. Remind that iBs  is not uniquely deter-
mined, because in  has generally many way of factoriza-
tion. We have to choose the best factorization of in  that 
makes iT  minimal. 

Under these conditions, iT  is given by 

),(max ii
i

iii TcTaTsTbT ++=  

where iTb  is the calculation time for border part of iBs , 

iTa  is the calculation time for the rest of iBs , iTs  is 
the setup time for communication of iBs , and iTc  is 
communication time of iBs . In this paper, all of iTb , 

iTa , and iTs  are simply assumed to be the linear func-
tion of the number of corresponding nodes. iTc  depends 
on various factors and can appear as various kind of func-
tion, but this paper only deals with an illustrative example 
such as latency is monotonically increasing function of 

in  and bandwidth is constant. Other kind of iTc  is also 
possible and feasible for our method. 

With these notations, the whole allocation problem 
is formulated as follows. 
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4. BRANCH-AND-BOUND 
 
     As in many combinatorial optimization problems, 
branch-and-bound method is adopted to limit search space. 
Suppose that we have a temporal feasible solution T . iT  
takes the minimum value at intermediate in , because 

iTa  monotonically decreases and iTc  monotonically 
increases when in  gets larger (Fig. 3). Therefore, lower 
and upper bounds of each block are derived from T .  
The real iT  is discrete and jaggy, but instead we can use 
the lower bound of iT  that is continuous and smooth, 
which is derived by relaxation. 

It is important for branch-and-bound method to get a 
good temporal solution earlier, because better temporal 
solution induces tighter bound that makes search space 
drastically small. So, it is a good idea to use an approxi-
mation algorithm at the first stage of optimization to cut 
hopeless branch roughly. The next section describes a 
simple and effective approximation algorithm. 
 
5. APPROXIMATION ALGORITHM 
 

It is essential for approximation algorithm to find a 
feasible sub-optimal solution in very short time. It is also 
desirable to give high-quality solutions, hopefully with 
performance guarantee. This section presents an approxi-
mation strategy, in which the upper limit in  is set for 
search of in . The basic idea is to reserve the share of 
processors for each block, and permit to discard surplus. 
Let iH  and iW  be the height and width of iB , then 

in  is defined by the following equation. 
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Searching between 1 and in , the approximated solution 
of in  is that makes iT  minimal. Repeating this proce-
dure for all blocks, a feasible sub-optimal allocation is 
derived in O(n) time. This is negligible compared to O(nm) 
search time for optimal allocation, hence applicable to 
large problems. The quality of derived sub-optimal solu-
tion is presented in the next section. 
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6. EVALUATION 
 

This section shows the results of numerical simula-
tions. In simulations, three static load-balancing schemes 
are evaluated. The first is Best, which is the optimal allo-
cation derived by combinatorial optimization. The second 
is Approx, which is the approximation derived by the 
method in the previous section. The last is Naive, in which 
every block is equally partitioned and distributed to all n 
processors. Naive is the best to balance the calculation, 
though accompanied by massive communication among 
processors. Computational domains were randomly gen-
erated, and the result is the arithmetic mean of 100 trials, 
normalized by the Best value. Simulation parameters are 
set to typical values in commercial parallel processors. 

Fig. 4 shows the effect of using larger parallel com-
puters in case m is 8. Approx and Best is far better than 
Naive, because Naive incurs heavy communication latency. 
The error of Approx against Best is less than 14.8% 
( 32≥n ). Fig. 5 shows the effect of using more blocks on 
64 processors. In most cases, Best and Approx is a few 
times better than Naive. When m is small, Best and Naive 
is similar because each block is distributed to many proc-
essors, which causes heavy network traffic. When m is 
comparable to n, Best scores bad because it has only lim-
ited choices for load balancing. The error of Approx is less 
than 14.6% ( 16≤m ). In both cases, mn 4≥  seems sat-
isfactory condition for Approx algorithm. 

Elapsed time for optimization )( exT  was measured 
in numerical simulations to induce the estimation equation 
shown below.  

24.5log)18.1084.0(log 1010 −+= nmTex  

Unit is second, and the platform is Intel Pentium-Pro 200 
MHz with FreeBSD. exT  is almost proportional to nm as 
predicted. From this equation, we can see the extent of m 
and n that can be solved in realistic time. 
 
7. CONCLUSION 
 

Our research enabled the optimal processor alloca-
tion for practical computation. Although it is still imprac-
tical to solve very large optimization problem because of 
combinatorial explosion, our approximation algorithm can 
find good sub-optimal allocation in negligible time. One 
of the obvious merits of our approach is that the quality of 
such approximation algorithm can be verified quantita-
tively by comparing to the optimal solution. Another merit 

is wide applicability to problems by adapting evaluation 
function. Our evaluation function is not necessarily to be 
convex or contiguous. Measurement results can be used 
for evaluation function in optimization. 

Evaluations on real parallel computer platforms are 
now under way to confirm and to improve our optimiza-
tion scheme. Physical allocation of processors should be 
considered in optimization process. Dynamic aspects in-
cluding network contention and collision should also be 
considered. It is also desirable to handle distributed com-
putational environment, which consists of non-uniform 
processors and relatively slow networks. 
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