
Evaluation of Accelerator Designs for Subgraph
Isomorphism Problem

Shuichi Ichikawa1, Hidemitsu Saito1,2, Lerdtanaseangtham Udorn1,3,
and Kouji Konishi1,4

1 Department of Knowledge-based Information Engineering,
Toyohashi University of Technology, Toyohashi 441-8580, Japan

ichikawa@tutkie.tut.ac.jp
2 Presently with Toshiba Corp.

3 Presently with Toyota Caelum Inc.
4 Presently with NTT Software Corp.

Abstract. Many applications can be modeled as subgraph isomorphism
problems. However, this problem is generally NP-complete and difficult
to compute. A custom computing circuit is a prospective solution for such
problems. This paper examines various accelerator designs, and compares
them quantitatively from two points of view: cost and performance. An
algorithm that is suited for hardware implementation is also proposed.
The hardware for the proposed algorithm is much smaller on logic scale,
and operates at a higher frequency than Ullmann’s design. The prototype
accelerator operates at 16.5 MHz on a Lucent ORCA 2C15A, which
outperforms the software implementation of Ullmann’s algorithm on a
400 MHz Pentium II.

1 Introduction

Many applications, including scene analysis and chemical structural formula
databases, are modeled as subgraph isomorphism problems. However, a subgraph
isomorphism problem is generally NP-complete [1] and difficult to compute in
practical time. There is a strong desire among application developers to shorten
the processing time of subgraph isomorphism detection.

Many such hard computation problems are heavily computation intensive.
The amount of data is small and communication time is negligible in comparison
to computation time. All these properties would seem preferable for acceleration
of the process by custom computing machinery.

In this paper, various aspects of hardware accelerators for subgraph isomor-
phism problems are discussed. Design alternatives are examined mainly from
two points of view: cost and performance. A prototype accelerator that is im-
plemented on FPGA is then described.

2 Related Work

There are few studies on custom hardware for graph isomorphism problems,
including the subgraph isomorphism problem.

ichikawa
S. Ichikawa, H. Saito, L. Udorn, and K. Konishi: "Evaluation of Accelerator Designs for Subgraph Isomorphism Problem," Proceedings of 10th Int'l Conf. on Field Programmable Logic and Applications (FPL 2000), LNCS 1896, Springer, pp. 729-738 (2000). ©Springer-VerlagNOTE: This file is updated to correct the errata found in the original version.

G G Gα β γ

Fig. 1. Subgraph Isomorphism

Ullmann [2] introduced an algorithm for subgraph isomorphism that has been
very popular in recent years. Ullmann showed that the refinement procedure of
his algorithm can be implemented by parallel hardware for faster execution, but
neither a detailed discussion nor real implementation was included.

The graph isomorphism problem can be formulated as a constraint satisfac-
tion problem (CSP). Swain and Cooper [3] presented a parallel hardware design
for CSP with arc consistency. They mentioned graph matching as a possible
application for their circuitry, although their design is not optimized for graph
isomorphism. In addition, no real implementation was described in their work.

There are some more studies on custom computing engines for CSP. However,
some have been neither implemented nor evaluated [4] [5]. The DRA chip by
Gu [6] is a VLSI implementation of a discrete relaxation algorithm (DRA),
which is implemented with a 3µ NMOS process. DRA is a general computational
technique and is applicable to subgraph homeomorphism problems. However, no
more detailed discussion or evaluation of graph problems is found in Gu’s work.

In this paper, various implementations of Ullmann’s algorithm are examined
in detail. Then, a new algorithm is proposed that requires much less in the way
of hardware resources. This new algorithm is implemented using a Lucent OR2C
FPGA.

3 Subgraph Isomorphism Problem

First, let us define the problem. A graph G is defined by (V, E), in which V
is the set of vertices and E is the set of edges. Gα = (Vα, Eα) is the subgraph
of Gβ = (Vβ , Eβ), if both Vα ⊆ Vβ and Eα ⊆ Eβ hold. Gα is isomorphic to
Gβ , if and only if there is 1:1 correspondence between Vα and Vβ that preserves
adjacency.

A subgraph isomorphism problem is a decision problem to determine whether
Gα is isomorphic to a subgraph of Gβ . For example, see Figure 1. Gα is isomor-
phic to a subgraph of Gβ . On the other hand, Gγ has no subgraph that is
isomorphic to Gα.

v
1

v
2

v
3

v
4

v
3

v
4

v
2

v
1

v
3

v
4

v
3

v
4

v
2

v
4

v
2

v
3

w 1

w 2

w 3 v
3

v
4

v
1

v
4

v
1

v
3

...

...

mapping

Fig. 2. Search Tree

3.1 Enumeration Algorithm

As is easily seen, subgraph isomorphism can be determined by brute-force enu-
meration with a depth-first tree-search algorithm. Figure 2 shows an example
of a search tree. Assume that Vα = {w1, w2, w3} and Vβ = {v1, v2, v3, v4}. At
the i-th stage of the search tree, wi is mapped to a possible vertex in Vβ . At
each leaf, the adjacency condition is checked by examining the correspondence
of the edges from Eα to Eβ . Subgraph isomorphism is found when all adjacency
is preserved at a leaf.

3.2 Ullmann’s Algorithm

The naive tree-search algorithm described in the previous section requires an
impractical execution time due to the vast search space. The number of leaves
is pβ

Ppα , where pα = |Vα| and pβ = |Vβ |. This grows quickly as pα and pβ grow.
Thus, some procedure is required to prune unnecessary sub-trees to shorten the
execution time.

The most popular algorithm is the one proposed by Ullmann, which is a
smart tree-search algorithm with a refinement procedure for pruning [2]. For Gα

to be isomorphic to a subgraph of Gβ , adjacent vertices in Gα must be mapped
to adjacent vertices in Gβ . If this condition is not satisfied, there is no chance
of finding subgraph isomorphism. The central idea of the refinement procedure
is to check this requirement recursively.

In Ullmann’s algorithm, the refinement procedure is invoked at every node
(including internal nodes). This involves some overhead in each internal node,
but the performance gain is drastic because the expansion of the search tree is
repressed effectively. Ullmann formulated the refinement procedure as follows.
Let A = [aij](1 ≤ i, j ≤ pα) and B = [bij](1 ≤ i, j ≤ pβ) be the adjacency
matrices of Gα and Gβ , respectively. Matrix M = [mij](1 ≤ i ≤ pα, 1 ≤ j ≤ pβ)
is defined as follows: If the mapping from vαi ∈ Vα to vβj ∈ Vβ is possible,
mij = 1. Otherwise, mij = 0. Then, the following procedure is applied until
no element of M is updated. The rxj(1 ≤ x ≤ pα, 1 ≤ j ≤ pβ) are temporal

variables.

rxj = (∃y)(mxy · byj) (1)
mij = mij · (∀x)(āix ∨ rxj) (2)

For more details of the refinement procedure, see Ullmann’s paper [2].
Ullmann discussed the parallel hardware implementation of the refinement

procedure [2], but it requires O(pαpβ
2) hardware resources. This grows rapidly

for larger pα and pβ , and our preliminary results of logic synthesis show that
only a small graph can be handled by the state-of-the-art FPGA (See Section
5). Thus, some other way is required for practical implementation.

3.3 Proposed Algorithm

A problem of the refinement procedure is that it checks not only mapped vertices
but also not-yet-mapped vertices. This involves huge resources. In this study, we
examine a simplified pruning procedure that only handles mapped vertices. See
Figure 1 again. At the i-th level of the search tree, only vertices w1, ..., wi(1 ≤
i ≤ pα) are mapped. Here, we only check the adjacency of these i vertices at
the i-th level. For Gα to be isomorphic to a subgraph of Gβ , it is necessary
that any subgraph of Gα is isomorphic to a subgraph of Gβ . Our simplified
pruning procedure checks this necessary condition. A complete description of
this algorithm is found in another paper [8].

The adjacency check of this algorithm is simply realized by referring to the
adjacency matrix of Gβ , instead of an expensive refinement procedure. Thus,
this method reduces hardware resources to O(pβ

2), which is small enough to fit
into state-of-the-art hardware for acceleration of subgraph isomorphism. On the
other hand, the search space reduction with this algorithm is modest, because
the ability to prune is inferior to that of Ullmann’s refinement procedure. This
can make execution time longer. The overall balance is dependent on the mixture
of various implementation factors.

In the next section, some design alternatives are presented and examined in
detail.

4 Implementation Issues

Ullmann’s idea [2] is to calculate M = [mij] (1 ≤ i ≤ pα, 1 ≤ j ≤ pβ) in parallel,
as described in Section 3.2. The element circuit to calculate mij is shown in
Figure 3. Let us call this element sub comb. The whole circuit is implemented by
the pα × pβ matrix of sub comb. Note that the rkj(1 ≤ k ≤ pα) of Figure 3 can
be shared among mij(1 ≤ i ≤ pα). Therefore, the required hardware resource
would be O(pαpβ

2). This combinatorial implementation is referred to as comb
in the following discussion.

Combinatorial implementation is too costly. It is possible to reduce the
amount of hardware needed by designing a sequential circuit, in exchange for

Fig. 3. Combinatorial Circuit for mij

Fig. 4. Sequential Circuit for mij

increased processing time. The following are three trivial ways to reduce the
number of sub combs.

seq i Modify M row by row, using pβ units of sub comb.
seq j Modify M column by column, using pα units of sub comb.
seq i j Modify M element by element, using a single unit of sub comb.

Another possible design is to make sub comb sequential. The pα-input AND
of sub comb can be implemented sequentially. This idea is illustrated in Figure
4. Let us name this circuit sub comb x. The followings are sequential implemen-
tations which use sub comb x.

seq x Modify all mij in parallel, using pαpβ units of sub comb x.
seq i x Modify M row by row, using pβ units of sub comb x.
seq j x Modify M column by column, using pα unit of sub comb x.

There are pros and cons of sequential circuits. Additional costs can emerge
from an input multiplexer and sequence controller in a sequential circuit. Mem-
ory cost sometimes decreases because the number of read/write ports can be
smaller in a sequential implementation than in a combinatorial implementation.

5 Evaluation

This section presents the various aspects of design, which include Ullmann’s
original circuit (comb), the proposed circuit (proposed), and sequential circuits
described in the previous section. We do not have enough space to describe each
design in detail, so we limit ourselves to the summary shown in Table 1. Please
note that the logic scale shown in Table 1 only counts logic gates. In addition to
them, O(pβ

2) memory cells are required in each design for adjacency matrices.

Table 1. Design Results

Design Order(logic) PFU(total) Freq(MHz)

comb pαpβ
2 2754 22.5

seq i pαpβ
2 1770 27.6

seq i j pαpβ 467 34.2
seq j pαpβ 583 27.9
seq x pβ

2 671 23.1
seq i x pβ

2 529 34.0
seq j x pβ 387 34.0
proposed pα log pβ 160 35.9

The order of resources is important, because it limits the scalability. However,
the real resource count for a certain technology is also important in understand-
ing the constant factor. Even the designs that require the same order of resources
can show big differences in real resource count.

To investigate the constant factor, we have to assume some technology or
implementation. Here, we adopt the Lucent OR2C series FPGA [7] as a measure.
We tuned each design for OR2C FPGA to the extent possible. Though each
implementation is not guaranteed to be the best, we believe it is not too far
away. In addition, pα and pβ must be fixed to make an implementation. Here,
we designed the circuit for (pα, pβ) = (15, 15).

The logic of each design is described in VHDL, embedding native OR2C
macro library. VHDL description is then processed by Synopsys FPGA Compiler
to derive a netlist. The logic synthesis system provides very sophisticated features
that we could have utilized. However, we did not use most of its features to
exclude the influences from logic synthesis tool. There are still many tips and
tricks in logic synthesis, which can affect much to the results. The characteristics
of each design becomes clearer by evaluating gate-level designs.

The derived netlist is mapped onto OR2C technology to extract the logic scale
and gate delay. The PFU count is summarized in Table 1. PFU (programmable
function unit) is a basic logic component of OR2C FPGA [7]. The PFU count in
the table includes both logic gates and memory cells. The operating frequency

in Table 1 is based on an estimated gate delay. Thus, the routing delay is not
counted here.

As seen in Table 1, PFU count varies much according to design, even if the
order of resources is the same. As the largest chip of OR2C FPGA is OR2C40A,
which contains 900 PFU, comb and seq i do not fit in a single OR2C FPGA
chip. PFU count is strongly related to cost, so we use PFU count as a measure
of implementation cost in the following discussion.

Another point is performance. Operating frequency alone is insufficient as a
performance measure. Even for the same set of input graphs, each design requires
a different number of cycles, because the sequence and configuration are different
in each design. Therefore, we have to count the number of cycles using hardware
simulators, in addition to estimating the operating frequency.

We have to pay close attention to the nature of input data (graphs), because
cycle count is strongly data-dependent. Here, we examine four sets of edge den-
sity 1 (edα, edβ) = (0.2, 0.2), (0.2, 0.4), (0.4, 0.2), and (0.4, 0.4). The average of
100 trials on randomly generated connected graphs are measured for each set of
(edα, edβ).

The execution time can be estimated with operating frequency and cycle
counts. Figure 5 summarizes the relationship between the area and the time of
each design. The slanting line in the figure is the AT = constant line that corre-
sponds to Ullmann’s original design. Cost is regarded to be almost proportional
to PFU count (area), and performance is defined by the reciprocal of the exe-
cution time. Therefore, the AT product is regarded as a measure of the ratio of
cost to performance. Figure 5 shows that seq j, seq x, and proposed designs turn
out to be cost-effective solutions to the subgraph isomorphism problem.

It seems a little odd that the proposed algorithm is very cost-effective. The
first reason is that it is very small and fits well to OR2C FPGA. This makes the
AT product better. Conversely, its ineffectiveness in pruning can make the AT
product worse. In fact, a worse AT product is seen in the cases of (edα, edβ) =
(0.2, 0.2), (0.4, 0.2), and (0.4, 0.4). However, the proposed algorithm works very
well in the case of (edα, edβ) = (0.2, 0.4), where the average execution time is
far bigger than that of other three cases. The result in Figure 5 is the sum of all
four cases, so the case (0.2, 0.4) dominates.

Why does the proposed algorithm do well when the average execution time is
large? Notice that subgraph isomorphism would be very likely if edα < edβ holds.
In such cases, pruning does not work well even with a refinement procedure,
because there are numerous isomorphisms in many subtrees. If the execution
time does not differ as much, the proposed algorithm can be more cost-effective,
because it is smaller than Ullmann’s circuitry.

The lesson is that we have to choose a suitable design, considering the nature
of the application and input graphs. In some cases, the proposed algorithm would

1 Let us consider a graph with p vertices and q edges. The edge density ed is defined
by the following equation: ed = 2 q/p(p − 1). That is, ed is the ratio of the number
of edges to that of the perfect graph Kp. It is obvious that the following relationship
holds: 0 ≤ ed ≤ 1.

10

100

1000

100 1000

T
ot

al
 T

im
e

[s
ec

]

Area [Number of PFU]

AT=Constant
comb
seq_i

seq_i_j
seq_j
seq_x

seq_i_x
seq_j_x

proposed

Fig. 5. Area vs. Time

be very effective. In more general cases, seq j would be reasonable. Seq x also
seems good, but the logic scale of seq x would be O(pβ

2) instead of the O(pαpβ)
of seq j. As pα ≤ pβ holds generally and pα � pβ holds in some applications,
seq j would scale better than seq x for bigger graphs.

6 Prototype Hardware

In this section, the FPGA implementation of the proposed algorithm is outlined.
We chose this design mainly because it is the smallest and simplest. The details
of this prototype are described in other papers [8] [9].

The prototype was implemented on an OPERL board [10], which is a run-
time reconfigurable PCI card with two Lucent OR2C FPGAs [7] (see Figure 6).
USER FPGA (OR2C15A) contains an application circuit that is programmed
and accessed from the host computer via PCI bus. Another is PCI FPGA
(OR2C15A), which contains PCI interface circuitry and a run-time reconfig-
uration controller for USER FPGA. The host computer is a personal computer
with AMD K6-III (400 MHz) and FreeBSD 2.2.8R. USER FPGA can be pro-
grammed in less than 5 ms. The application program can transfer data using
system call (read/write/mmap) or I/O instructions.

The key to utilizing SRAM-based FPGA is the extensive use of mapping
RAM in logic. Subgraph isomorphism problems naturally fit this scheme, as it is
implemented by a tree-search with adjacency matrices. We implemented a unit
that can handle up to (pα, pβ) = (15, 15), which fits well to the basic component
of OR2C FPGA (16 × 4 bit SRAM). This unit operates at 16.5 MHz, which is
half of the PCI clock. The unit could have been pipelined for 33 MHz operation
to derive twice the performance, but we chose to make things simple for this
prototype.

PCI FPGA USER FPGA

Fig. 6. OPERL board

Even this simple prototype outperforms an off-the-shelf microprocessor. An
OR2C15A chip that contains two units of our proposed algorithm shows about
20 times better performance than the software implementation of Ullmann’s
algorithm on a 400 MHz Pentium II processor. For the performance details of
this prototype, see another paper [8].

The performance can be boosted easily by (1) pipelining hardware, (2) im-
plementing several units that work in parallel, and (3) using a larger FPGA
chip. For example, the largest chip of OR2C FPGA (OR2C40A) contains 900
PFUs. Using OR2C40A, four independent units of the proposed algorithm can
be implemented on one chip. In this case, the performance gain would scale up
four times of a single unit.

7 Conclusion

Though the prototype hardware can handle only small graphs, it is easy to
implement an accelerator for larger graphs. For example, seq j requires only
an O(pαpβ) logic gates. This is not so much for a VLSI implementation. The
real problem is the explosion of execution time. Remember that this problem is
NP-complete. Pruning alleviates the problem, but never solves it.

The key is to design an application specific circuit. In this paper, we treated
algorithms and designs for general subgraph isomorphism problems. However,
as mentioned at the end of Section 5, the algorithm and architecture should be
customized for the application in order to maximize performance, considering
the nature of the data.

Take, for example, the case of a chemical structural database. In such an
application, the data structure is not a general graph. Each vertex has attributes
to represent its class: H, C, benzene ring, etc. The edges can also have attributes:
single bond, double bond, etc. Such attributes help to make execution time
shorter, if such information is used for pruning.

It is not always cost-effective to design such special circuitry, but the evolu-
tion of FPGA and logic synthesis will make it feasible in the near future.

Acknowledgment

This work was partially supported by the Hori Information Science Promotion
Foundation and the Ministry of Education, Science, Sports and Culture of Japan.

References

1. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
2. J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, Vol. 23, No. 1,

pp. 31–42, 1976.
3. M. J. Swain and P. R. Cooper. Parallel hardware for constraint satisfaction. In

Seventh National Conference on Artificial Intelligence (AAAI ’88), pp. 2:682–686.
Morgan Kaufmann, 1988.

4. C. Cherry and P. K. T. Vaswani. A new type of computer for problems in propo-
sitional logic, with greatly reduced scanning procedures. Information and Control,
Vol. 4, pp. 155–168, 1961.

5. J. R. Ullmann, R. M. Haralick, and L. G. Shapiro. Computer architecture for
solving consistent labelling problems. Computer Journal, Vol. 28, No. 2, pp. 105–
111, May 1985.

6. J. Gu, W. Wang, and T. C. Henderson. A parallel architecture for discrete re-
laxation algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.
PAMI-9, No. 6, pp. 816–831, Nov. 1987.

7. Lucent Technologies Inc. ORCA OR2CxxA (5.0 V) and OR2TxxA (3.3 V) Series
FPGAs Data Sheet, 1996.

8. S. Ichikawa, L. Udorn, and K. Konishi. An FPGA-based implementation of sub-
graph isomorphism algorithm. IPSJ Transactions on High Performance Comput-
ing Systems, 2000 (to appear, in Japanese).

9. S. Ichikawa, L. Udorn, and K. Konishi. Hardware accelerator for subgraph isomor-
phism problems. In Proc. IEEE Symp. FPGAs for Custom Computing Machines
(FCCM ’00). IEEE Computer Society, 2000 (to appear as extended abstract).

10. S. Ichikawa and T. Shimada. Reconfigurable PCI card for personal computing.
In Proceedings of the 5th FPGA/PLD Design Conference & Exhibit, pp. 269–277,
Tokyo, 1997. Chugai (in Japanese).

This article was processed using the LATEX macro package with LLNCS style.

