
Data Dependent Circuit for Subgraph

Isomorphism Problem

Shuichi Ichikawa and Shoji Yamamoto

Department of Knowledge-based Information Engineering
Toyohashi University of Technology

1-1 Tempaku, Toyohashi, Aichi 441-8580, JAPAN
ichikawa@tutkie.tut.ac.jp

http://meta.tutkie.tut.ac.jp/~ichikawa/index-e.html

Abstract. The subgraph isomorphism problem has various important
applications, although it is generally NP-complete and difficult to solve.
This paper examines the feasibility of a data dependent circuit for the
subgraph isomorphism problem, which is particularly suitable for FPGA
implementation. For graphs of 32 vertices, the average logic scale of data
dependent circuits is only 5% of the corresponding data independent
circuit. The circuit is estimated to be 460 times faster than the software
for 32 vertices. Even if the circuit generation time is included, a data
dependent circuit is expected to be two times faster than software when
there are 32 vertices. For larger graphs, the performance gain would be
far larger.

1 Subgraph Isomorphism Problem

The subgraph isomorphism problem is a simple decision problem. Given two
graphs Gα and Gβ , it is determined whether Gα is isomorphic to any subgraph
of Gβ . For example, see Figure 1. In this figure, Gβ has a subgraph that is
isomorphic to Gα, while Gγ does not.

The subgraph isomorphism problem has many applications, including scene
analysis in computer vision and search operation in chemical structural formula
database. However, the subgraph isomorphism problem is generally NP-complete
[1] and computationally difficult to solve.

To solve the subgraph isomorphism problem practically, several algorithms
have been proposed. Ullmann [2] proposed a depth first search algorithm with a

G γGβGα

Fig. 1. Subgraph Isomorphism

ichikawa
S. Ichikawa, S. Yamamoto: "Data Dependent Circuit for Subgraph Isomorphism Problem," Proceedings of 12th Int'l Conf. on Field Programmable Logic and Applications (FPL 2002), LNCS 2438, Springer, pp. 1068-1071 (2002). ©Springer-Verlag

2

r
m

m

r

a

ab
m
b
m
b
m
b
m

ij

i j

jpα

i1

i pα

1 j

jpβ

pα pβ

1 j

pα 1

jpβ

1pβ

1 j

11

Fig. 2. Element Circuit for Refinement Procedure

smart pruning procedure (refinement procedure), which is now the most popular
and frequently used algorithm for this problem.

2 Custom Circuit for Subgraph Isomorphism Problem

Ullmann pointed out that his refinement procedure can be implemented with
asynchronous hardware [2]. Let pα and pβ be the number of vertices of graph
Gα and Gβ , respectively. The adjacency matrices of graph Gα and Gβ are repre-
sented as A = [aij] (1 ≤ i, j ≤ pα) and B = [bij] (1 ≤ i, j ≤ pβ). The temporary
matrix M = [mij] (1 ≤ i ≤ pα, 1 ≤ j ≤ pβ) is also used in the refinement
procedure. Figure 2 illustrates the element circuit to calculate mij , which was
proposed by Ullmann [2]. The whole circuit includes a pα × pβ array of this
element circuit, which requires O(pα pβ

2) logic gates. Experimental evaluations
revealed, however, the fact that the Ullmann circuit requires too many logic
gates for FPGA [3].

In this paper, we examine the data dependent implementation of the Ullmann
circuit, which drastically reduces the number of logic gates. Generally, the circuit
can be reduced if any input of the logic circuit is set to a constant. This reduction
can be recursively applied. Therefore, a data dependent circuit can be smaller
than a data independent circuit for the same function. Smaller circuits usually
work at a higher frequency, and thus can be faster. A data dependent circuit
would be more cost-effective, because it is smaller (thus cheaper) and faster than
a data independent circuit.

Data dependent circuits are well suited for FPGA implementation due to
their nature. On the other hand, the evident problem is that a circuit must
be designed (or generated) for each input instance. Hence, the time for logic
synthesis, mapping, placement and routing is also important, along with the
execution time itself.

For computationally difficult problems such as subgraph isomorphism, the
execution time for larger problems grows very quickly. As we show later, the
circuit generation time could be inferior and negligible compared to the execu-
tion time. This is one of the reasons the authors considered a data dependent
approach for computationally difficult problems.

3

3 Design Approaches

First of all, the original Ullmann circuit should be evaluated as a basis for further
evaluation. The VHDL source code was taken from the previous project [3],
which is detailed in another paper [4]. This design is denoted “INDEP” in this
paper, because it is independent from input graph instances.

Next, we examine a data dependent design. If the input graph Gα is fixed,
each aij in Figure 2 becomes constant. That is, we can replace aij with the
corresponding constants in VHDL source code. At the same time, we can remove
the flipflops to store the adjacency matrix A. Once aij is replaced by a constant,
unnecessary logic gates are automatically reduced by logic synthesis software. It
is all the same when fixing the adjacency matrix B. We will obtain a maximum
reduction when both A and B are fixed.

Though it is easy and natural to leave logic reduction for the logic synthesis
system, it takes much memory and execution time. As we mainly need simple and
problem-specific optimization, we can manage a substantial part of the reduction
in the source code generation phase. This preprocessing drastically reduces the
total circuit generation time. Let us denote this design process, in which both
input graphs are fixed, by “BOTH2”.

4 Evaluation

Each of the results shown in this section is the average value of 50 pairs of Gα and
Gβ , which are randomly generated trees. Trees were chosen for inputs because
they are the sparsest connected graphs. To reduce simulation parameters, pα =
pβ is also assumed in simulations. It would be better to investigate dense graphs,
disconnected graphs, and the graphs of pα < pβ, but these are left for future
studies.

Logic synthesis was performed by Synopsys FPGA Compiler II on a Duron
800 MHz PC. Mapping to Lucent OR2C FPGA was done with ORCA Foundry
9.4a on a Pentium II 450 MHz PC. In this study, we did not try the placement
and routing. Software implementation of Ullmann’s algorithm was evaluated on
a Pentium III 600 MHz PC for comparison.

1.E+02

1.E+03

1.E+04

1.E+05

16 20 24 28 32

Number of vertices

A
re

a
[P

F
U

]

INDEP
BOTH2

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

16 20 24 28 32

Number of vertices

E
xe

cu
tio

n
T

im
e

[s
ec

.] SOFT

INDEP

BOTH2

Fig. 3. Logic Scale (Left) and Execution Time (Right)

4

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

16 20 24 28 32

Number of vertices

T
im

e
[s

ec
.] Generation

Synthesis
Mapping
BOTH2 (Total)

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

16 20 24 28 32 36 40 44 48

Number of vertices

T
ot

al
T

im
e

[s
ec

.]

SOFT

BOTH2

Software

BOTH2

Fig. 4. Circuit Generation Time (Left) and Total Processing Time (Right)

Figure 3 (left) summarizes the logic scale, which is taken from the synthe-
sis report. The logic scale is measured by the number of PFU (programmable
function unit) of OR2C FPGA. The logic scale of BOTH2 is only 12%–5% that
of INDEP for 16–32 vertices. Greater reduction is expected for larger graphs.
Figure 3 (right) shows the expected execution time, which was estimated by
the cycle count derived from the simulator and the operational frequency de-
rived from the mapping report. SOFT denotes the software execution time, and
BOTH2 denotes the estimated execution time of BOTH2 hardware. The accel-
eration ratio is 99–460 for 16–32 vertices. The ratio becomes larger in larger
graphs.

Figure 4 (left) shows the details of circuit generation time in BOTH2. Circuit
generation time grows gradually, and the execution time is negligible compared
to generation time. Figure 4 (right) compares the total time (generation + ex-
ecution) of a data dependent circuit to the software execution time. The data
dependent circuit is faster for 28-vertice or larger graphs. The performance ad-
vantage would be greater for larger graphs.

Acknowledgment

This work was partially supported by a Grant-in-Aid for Scientific Research
from the Japan Society for the Promotion of Science (JSPS) and a grant from
the Telecommunications Advancement Foundation (TAF).

References

[1] Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
[2] Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23 (1976) 31–42
[3] Ichikawa, S., Saito, H., Udorn, L., Konishi, K.: Evaluation of accelerator designs

for subgraph isomorphism problem. In: Proc. 10th Int’l Conf. Field-Programmable
Logic and Applications (FPL2000). LNCS1896, Springer (2000) 729–738

[4] Saito, H.: A study on hardware implementation of Ullmann’s algorithm. Master’s
thesis, Dept. Knowledge-based Information Engineering, Toyohashi University of
Technology (2000) (in Japanese).

