論 文

分布間距離を用いた Bilateral Filter の準最適パラメータ探索

非会員 真喜志泰希* 正 員 市川 周一*a) 非会員 藤枝 直輝* 正 員 山田 親稔**

Sub-optimal Parameter Estimation for Bilateral Filter using Distribution Distance

Taiki Makishi*, Non-member, Shuichi Ichikawa*a), Member, Naoki Fujieda*, Non-member, Chikatoshi Yamada**, Member

(2016年10月17日受付, 2017年1月23日再受付)

A method that estimates the parameters for a bilateral filter, based on the distribution distance of the images, is proposed. This study presents a method to estimate a sub-optimal set of parameters in a reasonable execution time by using a local search method with adequate initial values. The image quality is slightly degraded when sub-optimal parameters are used, and therefore a second method is proposed to compensate the parameters to achieve better image quality. Parameter estimation time was reduced from 398 s (brute-force method) to 0.15 s (proposed local search method) with a 2.8 GHz Xeon processor. When the compensated parameters are used, the image quality was approximately equal to the optimal result.

キーワード:バイラテラルフィルタ,分布間距離,パラメータ推定,高速化,局所探索 **Keywords:** bilateral filter, distribution distance, parameter estimation, accelerating, local search

1. はじめに

近年,エッジ保存性の高い平滑化フィルタとしてBilateral Filter (BF)⁽¹⁾⁽²⁾が広範な分野で使用されている。BFで良好 な結果を得るには適切な平滑化パラメータを使用する必要 があるが,このパラメータは多くの場合に経験的に決定さ れている。パラメータを機械的に設定する手法として,分 布間距離を用いたパラメータ探索手法⁽³⁾⁽⁴⁾が提案されてい る。この手法の有効性は実験により確認されているが,入 力画像によってパラメータ推定精度が低下するという問題 が指摘されている。

この問題に対して著者ら⁽⁵⁾は、入力画像の形状情報を考慮 したパラメータ推定法を提案した。この手法では、入力画 像の原信号の影響を低減するためLaplacian-Gaussian Filter を用いた多値画像輪郭抽出法⁽⁶⁾で導入し、事前仮定分布の 標準偏差の推定精度を高めている。しかし本手法では計算 量が大きく,各画像のパラメータ推定に長い処理時間を要 する。BF はコントラスト強調やノイズ除去など画像の前 処理に利用されるため,パラメータ推定にかかる時間は短 いことが望ましい。

本研究の目的は,産業システムで広く利用される PC 程 度の処理能力を前提として,BFによるノイズ除去を短時間 (1 秒以下,可能なら 30 ミリ秒程度)で実現することであ る。BFの採用は画質向上が目的であるから,一定の画質を 保ったうえで,高速化することを目指す。一般に画像処理 では,(真の)最適パラメータでなくても,十分な画質さえ 得られれば実用上問題ない。そこで本研究では,BFの準最 適パラメータを高速に推定する手法を検討する。

2. Bilateral Filter

BFは、Tomasiら⁽¹⁾により提案されたエッジ保存性の高 い非線形平滑化フィルタである。注目画素とその近傍画素 との間の距離と輝度差の両方を考慮し、これらの加重平均 により平滑化を行う。注目画素と近傍画素との輝度差の大 きい場所では重みが抑制され、画像の輪郭を保存した平滑 化が可能である。入力画素 (x, y) における画素値を I(x, y), フィルタ半径をrとすると、BFの出力 $I_{BF}(x, y)$ は (1) 式で 表される。

a) Correspondence to: Shuichi Ichikawa. E-mail: ichikawa@ieee. org

^{*} 豊橋技術科学大学

^{〒441-8580} 愛知県豊橋市天伯町雲雀ヶ丘 1-1

Toyohashi University of Technology

^{1-1,} Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan ** 沖縄工業高等専門学校

^{〒 905-2192} 沖縄県名護市辺野古 905 National Institute of Technology, Okinawa College 905, Henoko, Nago, Okinawa 905-2192, Japan

$$I_{BF}(x,y) = \frac{\sum_{i=-r}^{r} \sum_{j=-r}^{r} f(x+i,y+j)W(x+i,y+j)}{\sum_{i=-r}^{r} \sum_{j=-r}^{r} W(x+i,y+j)}$$
.....(1)

上式における重み W は以下の式で与えられる。

$$W(x+i, y+j) = \exp\left(-\frac{i^2+j^2}{2\sigma_r^2}\right)\exp\left(-\frac{[I(x,y)-I(x+i, y+j)]^2}{2\sigma_d^2}\right)$$

ここで σ_r , σ_d は, それぞれ空間方向及び輝度方向の平滑 化パラメータであり, このパラメータを調整することによ り平滑化の度合を調整することが可能である。フィルタ半 径rは $3\sigma_r$ 程度となる。

3. 分布間距離による BF のパラメータ推定

本章では,著者ら⁽⁵⁾が提案した分布間距離による BF の パラメータ探索手法を説明する。なお,本手法では,入力 画像に重畳している雑音をガウス性雑音と仮定している。 Fig.1 に本手法の概略を示す。

本手法の処理フローは以下となる。

- 入力画像に対し、Laplacian-Gaussian Filter を用い た多値画像輪郭抽出法によりエッジ検出を行う。
- (2) 入力画像を k×kの局所領域に分割し,各領域に 対して Median Absolute Deviation (MAD) 推定法 を適用し,各領域のデータのばらつきを求める。
- (3) ここで, MAD 推定法で必要となる中央値は, エッジ検出結果を用いてエッジ部と平坦部, それぞれで中央値を求めた値を使用する。
- (4) それぞれの領域での MAD 推定による結果の中で, 最小の値を選択する。
- (5) 選択された値を標準偏差 σ_{est} として, N(0, σ_{est}²)
 の正規分布 H_{ass} を生成する。
- (6) 生成した正規分布 *H*_{ass} を入力画像に重畳している 雑音分布と仮定する。

Fig. 1. An optimal parameter estimation of bilateral filter based on distribution distance ⁽⁵⁾.

- (7) BF により復元画像 *I_{BF}* を生成する。
- (8) 入力画像 *I* と BF による復元画像 *I_{BF}* との残差画像 *I_{res}* を各平滑化パラメータに対して生成する。
- (9) 生成した各平滑化パラメータに対する残差画像 *I_{res}*のヒストグラム *H_{res}*を作成し,正規化する。
- (10) 正規分布 *H*_{ass} とヒストグラム *H*_{res} との間で分布 間距離を求める。
- (11) 探索空間内の平滑化パラメータ σ_r, σ_d の全組合
 せに対して分布間距離を求める。
- (12) 求めた分布間距離の中で値が最小となる組合せを、 入力画像に対する最適な平滑化パラメータとする。

MAD 推定法は、データ群の中央値を用いてデータのばら つきを求める手法であり、外れ値に対してロバストな推定 が可能である。Fig.1 に示すように、画像をサイズ $k \times k$ に 分割したとき、i 番目のデータブロックを $I_{i,j}$ (1 $\leq j \leq k^2$) と表すことにする。そのブロックのデータのばらつきを $\hat{\sigma}_i$ とすると、MAD 推定法は (2) 式で定義される。

$$\hat{\sigma}_{i} = C \cdot \max_{j} \{ |I_{i,j} - \max_{j} \{I_{i,j} : 1 \le j \le k^{2} \} | : 1 \le j \le k^{2} \}$$
.....(2)

ここで, med はブロック内のデータから中央値を求める 関数, C はブロック内のデータのばらつきを正規分布の標 準偏差と一致させるためのスケーリングパラメータであり, 本研究では, C を 1.4826 としている。これは,使用する BF のパラメータ探索手法が入力画像に重畳している雑音 をガウス性雑音と仮定しており,正規分布に対する MAD 推定結果である 1.4826 を乗じる必要があるためである。本 手法で使用する正規分布の標準偏差 *σ*est は,各ブロックの MAD 推定の結果の中で最小の値としているため,(3)式で 定義される。

本研究では分布間距離として Hellinger Distance (HD)[®] を使用しており, HD は (4) 式で定義される。

HD =
$$(1 - BC)^{\frac{1}{2}}$$
.....(4)
BC = $\sum_{i=-255}^{255} [H_{ass}(i)H_{res}(i)]^{\frac{1}{2}}$

ここで, BC は Bhattacharyya 係数と呼ばれ, 2つの分布 間の類似度を表している。BC が1に近いほど2つの分布 が類似していることを意味する。

4. 探索手法

以下の議論で用いる評価環境は Table 1 に示すとおりで ある。評価画像には、先行研究⁽⁵⁾と同じく Standard Image Data Base (SIDBA) に登録されている 8 枚の画像を採用し (Fig. 2),標準偏差 $\sigma = 10$ のガウス性雑音を重畳して入力 画像とした。画質の指標には PSNR (Peak Signal-to-Noise Ratio)を用いる。

	P
CPU	Xeon E5-2680 v2 @2.8 GHz
Memory	DDR3 128 GB
OS	Red Hat Enterprise Linux Server release 6.4 (Santiago)
Kernel	2.6.32-358.23.2.el6.x86_64
Language	С
Compiler	Intel C++ Compiler 14.0.0
Library	Intel IPP 8.0
Compile Option	default (-O2)
Images	256 * 256 pixel
σ_r	0.5 ~ 7.5 (step 0.1)
σ_d	2 ~ 75 (step 1)

Table 1. Evaluation platform.

Fig. 2. Input images.

Table 2. Optimal parameters to minimize HD and to maximize PSNR.

	Optimal HD					Optimal PSNR			
Image	σ_d	σ_r	HD	PSNR	σ_d	σ_r	PSNR		
Airplane	49	0.7	0.0132	31.11	21	1.3	32.19		
Barbara	27	3.0	0.0202	28.76	23	0.8	30.60		
Boat	26	2.0	0.0149	31.81	25	1.0	32.62		
Bridge	38	1.8	0.0198	26.35	17	1.1	29.64		
Cameraman	38	0.9	0.0188	31.89	19	1.5	32.72		
Girl	27	2.1	0.0168	32.13	30	0.9	33.33		
Lax	27	2.0	0.0278	28.79	16	1.4	30.32		
Lenna	42	1.4	0.0201	31.22	26	1.0	32.81		

〈4・1〉 総当たり法 3章で述べた総当たりのパラメー タ探索を実装したところ, Table 2 のような結果が得られ た。PSNR を最大化するパラメータ対を選ぶことができれ ば, 画質は合格ラインの 30 dB を概ね達成できることがわか る。HD を最小化するパラメータ対では, Barbara, Bridge, Lax の 3 画像で若干画質が低下するが, 概ね良好な画像品 質が得られることが確認された。

Barbara, Bridge, Lax の3 画像で画質が低下するのは, HD と PSNR の曲面が若干異なるためである。参考として, 画像 Bridge の HD と PSNR を等高線図で示す(Fig. 3 と Fig. 4)。HD の極小値は, Fig. 3 の領域 [0-0.2] に曲線状の 谷として現れている。同様に PSNR の極大値は, Fig. 4 の 領域 [29-32] に峰として表れている。探索領域内で HD を 最小にする点 (σ_d , σ_r) = (38, 1.8) は, PSNR を最大化する 点 (17, 1.1) から大きく離れている。その結果, Bridge では 他の画像に比べて画質の劣化が大きくなる。逆に, HD 最 小点と PSNR 最大点が近い画像(例えば Boat) では, 画質 の劣化は少ない。

Fig. 3. Contour map of HD (Bridge).

Fig. 4. Contour map of PSNR (Bridge).

Table 3. Processing time of each function for a set of parameters.

	Processing Time [ms]
Bilateral Filter	$0.08 \sim 87.87$
Histogram	0.146
Distribution Dist.	0.074

最適パラメータ対の探索時間は, Table 1 の環境で約 398 秒であった。画像 1 枚のノイズ除去に 6 分以上かかるので は実用上問題がある。処理時間を 1 秒未満,可能であれば 動画の実時間処理が可能な 30 ミリ秒程度まで短縮するこ とが望まれる。

そこでまず、各パラメータ対 (σ_d , σ_r) において実行時間 の内訳を調べた (Table 3)。BF の処理時間に幅があるのは、 パラメータに依存するためである。BF の処理時間は概ね フィルタ半径 r の二乗に比例するため、 σ_r が大きいと実行 時間も長くなる。総当たりによるパラメータ探索では、フィ ルタ半径の大きいパラメータ対も全て探索するため、実行 時間の増大を招くことがわかった。そこで本研究では、総 当たり法による最適パラメータ探索を諦めて、十分な画質 を与える準最適パラメータを高速に探索する手法について 検討する。

もちろん BF を高速化するという方向性も考えられるが, それは簡単ではない。使用したフィルタは Intel 社の画像 処理ライブラリ IPP (Intel Integrated Performance Primitives)⁽¹⁰⁾の BF 関数であり, Intel 社の CPU 用に高度に最 適化されたものである。コンパイラも Intel 純正品であり, SIMD 命令の利用などハードウェアの性能は既に十分利用 されている。マルチスレッド化や GPU による高速化は検 討可能であるが, アルゴリズムを工夫して画質と処理方法

Fig. 5. An example of binary search.

Table 4. Results of binary search.

Image	σ_d	σ_r	HD	PSNR	Time [s]
Airplane	25	2.3	0.0190	31.44	0.2163
Barbara	26	3.0	0.0244	28.93	0.2503
Boat	25	2.7	0.0167	31.44	0.2163
Bridge	34	3.9	0.0240	26.10	0.3500
Cameraman	25	2.3	0.0200	32.03	0.2163
Girl	25	2.7	0.0234	31.70	0.2163
Lax	25	2.7	0.0358	28.88	0.2163
Lenna	32	3.4	0.0242	30.23	0.2979

を改善することが先決で,並列化はその次のステップと考 える。

最適パラメータ探索は一種の組合せ最適化問題^{(の}なので, 探索時間の高速化には,既知の多くの手法を利用できる。 以下,本研究では,二分法と局所探索について検討する。

〈4・2〉 二 分 法 Fig.5 に二分法の概念図を示す。探 素領域の中点で評価関数fの勾配を求め、fを改善する方向 に探索領域を縮小する。このとき各軸について 1/2 にする ため二分法と呼ばれる。探索領域が十分小さく(あるいは 1 点に)なったら終了し、その点を解とする。評価関数の大域 的性質を考慮しないため解の質は保証されないが、終了ま での処理回数が決まっているという長所がある。たとえば 探索領域が $m \times n$ であるとき、二分法は概ね $\log_2 \max(m, n)$ 回で終了する。各探索点では勾配 ∇f を計算するため、評 価関数f(i, j), f(i + 1, j), f(i, j + 1)を評価する必要がある。

Table 4 に,二分法による探索の評価結果をまとめる。準 最適化であるため Table 2 と比較して HD は悪化している が,画質は概ね同等である。実行時間は平均 0.25 秒で,総 当たりの 398 秒と比べて大幅に高速化された。

探索時間は Table 3 で測定した各パラメータの実行時間 を積算して見積もっている。実測では有効数字を確保する ために同じ演算を多数繰り返して平均する必要があり,多 大な CPU 資源(と人的労力)を浪費するためである。各手 法の比較検討をしたのち, <5·3>節では提案手法の探索時 間(実測値)を示す。

〈4・3〉局所探索 Fig.6に局所探索の概念図を示す。 局所探索では探索空間内の一点に注目し,注目点の近傍で 最も評価値が良い点を次の注目点として探索を続ける。注 目点の近傍で評価値を改善できない場合,その注目点を解 (局所解)として探索を終了する。局所探索で最適解が求ま る保証はないが,局所解を求める直観的手法として広く用 いられている。

Fig.6 において,点 pは世代 T = n における注目点であ

Fig. 6. An example of local search.

Table 5. Results of local search.

Image	σ_d	σ_r	HD	PSNR	Time [s]
Airplane	25	2.9	0.0179	31.16	0.9909
Barbara	27	3.0	0.0202	28.76	0.9086
Boat	25	2.5	0.0159	31.57	1.0490
Bridge	35	3.9	0.0221	25.92	0.3127
Cameraman	25	2.3	0.0200	32.03	1.0988
Girl	26	2.8	0.0194	31.51	0.9577
Lax	27	2.0	0.0278	28.79	1.1549
Lenna	32	3.9	0.0206	29.95	0.6254

る。点pに隣接する8つの探索点のうち,最良の評価値を 与える点qを世代T = n + 1の注目点とする。T = n + 1では点qの近傍で評価値を計算するが,点p,qを含む 4 点は世代T = nで計算した結果を再利用できる。従って T = n + 1では,新たに探索する5点(灰色の点)だけを 評価すればよい。演算結果の再利用により,計算量を概ね 1/2に削減できる。

Table 5 に局所探索の評価結果をまとめた。開始点は探索 領域の中点とした。画質は二分法と同等であるが,平均実 行時間は 0.89 秒で,二分法より遅い。

二分法の解を局所探索で改良することも試みた。HD は 13%減少するが, PSNR の改善は見られず, 実行時間が 49%増加した。従って, この2つを組み合わせるメリッ トはないと思われる。

5. 局所探索の改良

4章の結果から、二分法で高速に準最適パラメータを推 定することができ、サンプル画像8枚中5枚で十分な画質 を得ることができた。しかしながらBridge,Barbara,Lax では若干画質が劣化し、局所探索を組合わせても画質は改 善しなかった。そこで本章では、局所探索に工夫を加えて、 画質と実行時間の改善を試みる。

〈5・1〉 探索開始点の改良 局所探索は,探索開始点が 不適切であると探索経路が長くなり,処理時間が増大しやすい。探索開始点が最適解から遠いと,質の悪い局所解に到 達して画質が劣化する可能性もある。そこで本節では,探 索開始点を吟味することにより,局所探索の改良を試みる。

4章では,探索開始点を探索空間の中点に設定した。解 が探索空間のどこにあるかわからない場合,中点から開始 するのは自然である。しかし一般に,人間の扱う画像には 目的に応じた偏りがあり,最適パラメータにも一定の傾向

Table 6. Local search from the avarage point derived from sample images.

	Start point					Local minimum			
Image	σ_d	σ_r	HD	PSNR	σ_d	σ_r	HD	PSNR	Time [s]
Airplane	32	1.9	0.0547	30.81	27	1.8	0.0163	31.51	0.0632
Barbara	35	1.6	0.0814	28.27	28	2.0	0.0212	29.09	0.1404
Boat	35	1.7	0.0620	31.14	30	1.3	0.0165	32.19	0.0569
Bridge	34	1.7	0.0505	27.05	38	1.8	0.0198	26.35	0.0711
Cameraman	34	1.9	0.0635	31.20	30	1.3	0.0197	32.08	0.0695
Girl	35	1.7	0.0487	31.98	32	1.3	0.0174	32.92	0.0463
Lax	35	1.7	0.0901	27.56	28	1.7	0.0284	28.80	0.0864
Lenna	33	1.8	0.0389	31.52	36	2.1	0.0208	30.80	0.1164

が生じると考えられる。そこで、サンプル画像の HD を最 小化するパラメータを求め、複数のサンプル画像の最適パ ラメータの平均値を局所探索の初期値とすることを試みる。 サンプル画像と評価画像に一定の相関があれば、探索経路 が短縮されて、実行時間の短縮と画質改善が期待できる。

Table 6 に上記手法の評価結果をまとめる。探索開始点は 評価画像以外の7枚のサンプル画像から求め,その探索開 始点から評価画像の準最適パラメータを局所探索している (交差検証法)。

探索時間は平均81.3 ミリ秒となり,毎秒10コマ以上処 理できる速度になった。中点からの探索と比べて10.9 倍高 速,二分法と比べても約3倍高速である。

一方, 画質に関しては大きな改善は見られなかった。HD は探索開始点の平均0.06から解の平均0.02へ, 局所探索に より改良されている。PSNRも開始点の平均29.94dBから 局所解の平均30.47dBへ僅かに改善されるが, 大きな差で はない。Bridge, Barbara, Laxの画質不足も解消されない。

〈5・2〉 画質の改善 2章で述べた通り, HD を最小化 しても PSNR は最大化されない。従って HD を評価関数に 採用する限り, 探索方法を改良しても, 画質をこれ以上改 善することは難しい。HD 以外の評価関数を検討すること は今後の重要な課題だが,本研究では HD を使って画質を 改善する手法を検討する。

まずサンプル画像を用いてHD (評価関数) と PSNR (画 質)の関係について検討する。Fig.7は、HD を最小化する パラメータと、PSNR を最大化するパラメータの相関を示 したものである。 σ_d については相関係数 0.2 であるが、 σ_r については相関係数 0.7 と高い相関がみられる。図中の直 線は最小二乗法による回帰直線である。このような相関を 用いて、HD に関する準最適パラメータから、PSNR を準 最適にするパラメータを推定することを試みる。

Table 7 は, HD から求めた準最適パラメータと, それを 回帰直線によって補正したパラメータで, PSNR を比較した ものである。HD から求めた準最適パラメータは, <5·1>で 説明した手法により求めたものである(Table 6)。<5·1>節 と同様に,回帰直線は評価画像以外の7枚のサンプルから 求め,その式を評価画像のパラメータ推定に用いている(交 差検証法)。

回帰直線によるパラメータ推定で画質は改善され, Bridge,

Fig. 7. Correlation between the HD-optimal parameter and the PSNR-optimal parameter.

Table 7. PSNR with the estimated optimal parameters.

				D		DOMD 1 1
	HD-optimized			Estimated PSNR-optima		
Image	σ_d	σ_r	PSNR	σ_d	σ_r	PSNR
Airplane	27	1.8	31.51	23	1.1	32.16
Barbara	28	2.0	29.09	23	1.1	30.45
Boat	30	1.3	32.19	22	1.2	32.59
Bridge	38	1.8	26.35	23	1.1	29.27
Cameraman	30	1.3	32.08	23	1.2	32.64
Girl	32	1.3	32.92	21	1.2	33.10
Lax	28	1.7	28.80	25	1.1	29.80
Lenna	36	2.1	30.80	21	1.1	32.68

Barbara, Lax の画質不足も概ね解消されたことがわかる。 Table 2 の最適パラメータと比較しても, 遜色のない画像が 得られている。回帰直線を求めるために事前準備が必要で はあるが,実行時には一次式を計算するだけなので,実行 時間の増大も無視できる。

いいことづくめのようだが、本研究のサンプル画像は、 SIDBAの画像にガウス性雑音を付加して生成したものであ る⁽⁵⁾。従って、元画像とフィルタ処理後の画像から PSNR を求めることができ、上記のような相関が計算できる。一 方、実システム等でノイズ入り画像しか入手できない場合、 PSNR が計算できないため PSNR を最大化する平滑化パラ メータを求めることもできない。その場合、本手法をその まま適用することはできない。

本節の結果が示唆するのは,HDを最小化する準最適パ ラメータの画質は必ずしも十分でないが,パラメータを補 正することで画質を改善できる可能性があるということで ある。従って,例えば以下のような状況であれば,本節で 述べた補正法を利用できると考えられる。

- ・監視カメラ応用のように、光量不足で画像にノイズが 発生する場合。サンプル取得時に光量を増やしてノイ ズの少ない画像を取得し、それを通常光量(ノイズ付 き)画像の元画像として、PSNRを計算する。
- カメラでなく伝送路でノイズが重畳される場合。カメ ラ設置場所(ノイズなし)と受信場所(ノイズ有り)で、 一対のサンプル画像を同時に取得する。

もちろん, PSNR 以外の画像評価方法を用いて補正式を 求めることも考えられるが、それは今後の課題とする。

〈5·3〉 実測による確認 〈5·1〉節では,局所探索の開始点を工夫することにより,探索時間が大幅に短縮されることを示した。しかしその探索時間は,〈4·2〉節で述べた

Table 8. Measured execution time of the proposed local search.

	Estimation [s]	Measured [s]	Ratio
Airplane	0.0632	0.2013	3.19
Barbara	0.1404	0.1998	1.42
Boat	0.0569	0.1101	1.93
Bridge	0.0711	0.1597	2.25
Cameraman	0.0695	0.1654	2.38
Girl	0.0463	0.0975	2.11
Lax	0.0864	0.1727	2.00
Lenna	0.1164	0.0892	0.77
Average	0.0813	0.1495	1.84

通り、Table 3 に基づく見積である。そこで実際のプログラ ムで実行時間を測定し,探索時間の短縮を確認した。

結果を Table 8 に示す。表に示した見積値は Table 6 に示 したものである。実測値は、同じ処理を繰り返し実行し、合 計実行時間が1秒を超えた時点の実行時間を実行回数で割っ て求めた平均値である。実測値は見積値より平均84%長い が、これは見積根拠としたデータの誤差や、見積で無視した 要因の蓄積によるものと考えられる。実測値が1秒以下と 短いので,実測値に含まれる測定誤差の影響も考えられる。

いずれにせよ、実測でも平均0.15秒で探索を終了し、準 最適パラメータを求めることができた。当初の398秒と比 べても,十分な高速化を達成したといえる。

6. まとめ

本論文では、分布間距離を用いた Bilateral Filter の準最 適パラメータを探索するため、サンプル画像から求めた初 期値を開始点として局所探索することにより、平均0.15秒 (実測)という高速なパラメータ推定が可能であることを示 した。

得られたパラメータで平滑化された画像は概ね満足な画 質を示すが、若干画質が低下する場合もある。その場合、サ ンプル画像から求めた回帰直線で準最適パラメータを補正 することにより, 最適パラメータに匹敵する画質が得られ ることを示した。

今後の課題は以下にまとめる通りである。

- パラメータ補正なしで高画質を得られるように, HD に 代わる評価関数を考案する。
- PSNR 以外の画質評価方法を検討する。
- ●並列化などにより、サイズの大きな画像でも実時間処 理できる方法を実装する。

謝 辞

本研究は JSPS 科研費 JP16K00072 および JP26870278 の助成を受けたものです。

> 文 献

- (1) C. Tomasi and R. Manduchi: "Bilateral filtering for gray and color images", Computer Vision, 1998. Sixth International Conference on Computer Vision, pp.839-846, IEEE (1998)
- (2) 浦浜喜一:「第8回 画像の本質を引き出す:バイラテラルフィルタ

によるノイズ除去とイラスト風画像の生成(講座次世代ディジタル カメラ/ディジタルムービーを予測する)|,映像情報メディア学会誌: 映像情報メディア, Vol.62, No.8, pp.1268–1273 (2008)

- (3) H. Hashii, G. Tanaka, N. Suetake, and E. Uchino: "Parameter tuning of ε filter based on hellinger distance", IEICE Technical Report SIS, Vol.109, No.447, pp.33-36 (2010) (in Japanese) 橋井勇人・田中 豪・末竹規哲・内野英治: [Hellinger 距離に基づいた ϵ-フィルタのパラメータ調整」,信学技報 SIS2009-54, Vol.109, No.447, pp.33-36 (2010)
- (4) N. Suetake, G. Tanaka, H. Hashii, and E. Uchino: "Optimal parameter estimation of bilateral filter based on distribution distance", IEICE Trans. Fundamentals, Vol.J94-A, No.4, pp.285-292 (2011) (in Japanese) 末竹規哲・田中 豪・橋井勇人・内野英治: 「分布間距離に基づいたバ イラテラルフィルタの最適パラメータの推定」, 信学論 A, Vol.J94-A, No.4, pp.285-292 (2011)
- (5) T. Makishi, C. Yamada, T. Ogino, and S. Ichikawa: "A study on parameter estimation of bilateral filter using distribution distance", IEEJ Trans. IA, Vol.135, No.2, pp.87-92 (2015) (in Japanese) 真喜志泰希・山田親稔・荻野 正・市川周一:「分布間距離を用いた Bilateral Filter のパラメータ推定法の一考察」, 電学論 D, Vol.135, No.2, pp.87-92 (2015)
- (6) N. Muranaka, S. Kudoh, T. Ashida, M. Tokumaru, and S. Imanishi: "On the multiple-valued image contour extraction method using laplacian-gaussian filer", IEICE Trans. Inf. & Syst., Vol.J85-D2, No.10, pp.1503-1512, 2002 (in Japanese) 村中徳明・工藤新也・芦田高則・徳丸正孝・今西 茂: 「ラプラス-ガウスフィルタを用いた多値画像輪郭抽出法|,信学論 D, Vol.J85-D2, No.10, pp.1503-1512 (2002)
- (7) K. Yamano and C.K. Pham: "Multiple-valued image contour extraction method using variable threshold laplacian-gaussian filter", IEICE Technical Report SP, Vol.105, No.297, pp.49-52 (2005) (in Japanese) 山野公太郎・範 公可:「可変閾値のラプラス-ガウスフィルタを用いた 多值画像輪郭抽出法」,信学技報 SIS2005-42, Vol.105, No.295, pp.49-52 (2005)
- (8) D. Pollard, A user's guide to measure theoretic probability, Vol.8, Cambridge University Press (2002)
- (9) 藤田 宏・今野 浩・田邉國士・茨木俊秀:「離散最適化法とアルゴ リズム」, 岩波書店 (1998)
- (10) "Reference Manual for Intel Integrated Performance Primitives 8.2". http:// www.hpc.ut.ee/dokumendid/ips_xe_2015/composerxe/Documentation/en_ US/ipp/ipp_manual/index.htm

真喜志 泰 希 (非会員) 2013 年沖縄工業高等専門学校情報通 信システム工学科卒業。2015年同高等専門学校 専攻科創造システム工学専攻電子通信システム工 学コース卒業。2017年豊橋技術科学大学大学院 工学研究科電気·電子情報工学専攻修士課程修了。 電子情報通信学会会員。

市 川 周 - (正員) 1985年東京大学理学部卒業。1987年同 大学大学院理学系研究科修士課程修了。1987年 新技術事業団 創造科学推進事業(ERATO)後藤 磁束量子情報プロジェクト研究員。1991年三菱 電機(株)LSI研究所,システムLSI開発研究所 勤務。1994年名古屋大学工学部助手。1997年豊 橋技術科学大学工学部知識情報工学系講師。同助 教授,准教授を経て,2010年豊橋技術科学大学大

学院工学系研究科准教授。2011年沼津工業高等専門学校制御情報工 学科教授。2012年より、豊橋技術科学大学大学院工学系研究科教授。 現在に至る。理学博士。並列計算機, 並列処理, および専用計算シス テムアーキテクチャの研究に従事。IEEE (senior member),電子情報 通信学会(シニア会員), ACM, 情報処理学会, 各会員。

藤枝直輝(非会員) 2013年東京工業大学大学院情報理工学 研究科計算工学専攻博士後期課程修了。博士(工 学)。同年より豊橋技術科学大学電気・電子情報 工学系助教。プロセッサアーキテクチャ, FPGA 応用,組み込みシステム,セキュアプロセッサの 研究に従事。情報処理学会,電子情報通信学会, IEEE 各会員。

山 田 親 稔 (正員) 2000 年琉球大学大学院理工学研究科博 士前期課程修了。2004年同大学大学院博士後期 課程単位取得満期修了。同年拓殖大学北海道短期 大学専任講師。2007年沖縄工業高等専門学校情 報通信システム工学科助教。2009年同高等専門 学校情報通信システム工学科准教授。2014年よ り、ビクトリア大学(カナダ)客員研究員。2015 年沖縄工業高等専門学校情報通信システム工学科

准教授。現在に至る。博士(工学)。形式的設計検証, リコンフィキャ ラフルシステムの研究・教育に従事。IEEE, 電子情報通信学会, 情報 処理学会, 各会員。