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Although a Programmable Logic Controller (PLC) has been widely adopted for the sequence control of industrial
machinery, its performance does not always satisfy the recent requirements in large and highly responsive systems.
With the state-of-the-art FPGA technology, it is possible to implement a control program with hard-wired logic for
higher response and reduced implementation cost/space. This approach is also worthwhile for transmigration of legacy
PLC software into forthcoming FPGA-based control hardware.

This study presents a systematic method to implement a hard-wired sequence control from PLC software. PLC
instructions are converted into VHDL codes, and then implemented as logic circuit with various peripheral functions.
Productive PLC programs were examined with Mitsubishi Electric FX2N PLC and Altera Stratix Il FPGA, and were
shown to fit into a common FPGA chip. A straightforward Sequential design was estimated to be 184 times faster than
PLC, while a performance-oriented Flat design was estimated to be 44 times faster than Sequential design (i.e., 8050
times faster than PLC). A practical perfect layer winder system was actually built and successfully operated with our
FPGA control board, whose logic design was implemented with our tools.
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1. Introduction

A Programmable Logic Controller (PLC) has been widely
adopted for the sequence control of industrial machinery.
Since industrial machinery is customized for each customer
and operates for a long period, there exists enormous number
of legacy software for PLC systems. It is practically very im-
portant to make full use of these legacies for the current and
future systems.

Although the importance of PLC is definite and undoubted,
some problems have arisen recently. The first problem is that
the performance of PLC does not always satisfy the recent re-
quirements in large and highly responsive systems. Another
problem of PLC is that a PLC program is easy to duplicate
and to analyze. This often results in the leakage of valuable
trade secrets and the rise of clone products. As a solution
to these problems, a hard-wired implementation of PLC pro-
gram is proposed in this study.

Field Programmable Gate Array (FPGA) is a kind of re-
configurable LSI, which can be programmed at all times by
downloading its configuration data. By implementing a con-
trol program with hard-wired logic using an FPGA device,
a flexible and highly responsive system could be realized.
Maximally ten million logic gates are available in a single
FPGA chip, which is enough to implement a very large con-
trol system. The FPGA implementation might lead to down-
sizing and reduction of system components.
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It should be also noted that FPGA is more secure than PLC
in protecting intellectual properties, because it is more diffi-
cult to analyze an FPGA design than to analyze a PLC pro-
gram. Some recent FPGA devices provide design security
features (e.g., Altera Stratix-II"), which protect the design
by cryptographic encryption algorithm.

For all these merits, there are some drawbacks in an FPGA-
based control system. It is necessary to re-generate the circuit
from the PLC software, whenever the control program is up-
dated; it is thus not suited for the application where the pro-
gram is frequently changed. Reliability and noise immunity
issues are also practical concerns in actual control systems,
since recent FPGA devices are driven at a low voltage (e.g.,
1.8 V). The authors never insist on replacing all conventional
PLCs with FPGAs. Rather, we suggest that FPGA technol-
ogy might offer a promising alternative solution for some ap-
plications, particularly for highly responsive systems.

This study presents a systematic method to implement a
hard-wired sequence control based on PLC software. First,
a PLC program (instruction sequence) is translated into logic
description in VHDL @ with our converter. To support vari-
ous PLC instructions and peripheral devices, a control logic
library was compiled from the corresponding VHDL rou-
tines. All these VHDL source codes are then synthesized,
placed, and routed for a target FPGA device by CAD soft-
ware. The authors developed a new FPGA control board with
various I/O devices, and a perfect layer wider system was ac-
tually implemented with this FPGA board.

The rest of this paper is organized as follows. Section 2
outlines the background and related studies of this study.
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Fig. 1. Overview of ladder diagram. ® ((©2006 IEEE)

Section 3 describes the method to translate PLC programs
to hardware descriptions. The evaluation results of two sam-
ple PLC programs are detailed in Section 4. Section 5 sum-
marizes the overall design framework, and Section 6 in-
troduces experimental industrial machinery that was imple-
mented with an FPGA control board. Two supplementary
topics are then examined in Section 7. Section 8 concludes
the paper, showing the list of items left for future studies.

2. Background and Related Studies

There have been some studies on the implementation of a
control program in FPGA. For example, Adamski and Mon-
teiro @ ® presented a design methodology that translates “in-
terpreted Petri net specification” into hardware description
languages. Wegrzyn et al. © ? presented a framework that
transforms rule-based descriptions (e.g., interpreted Petri net)
into logic descriptions (e.g., VHDL). Ikeshita et al.® pre-
sented a conversion program that translates SFC (Sequen-
tial Function Chart) description into Verilog-HDL for logic
synthesis. Silva et al.®"” presented a hardware-software
platform to implement logic controllers with both PLC and
FPGA, where Petri net descriptions are translated into VHDL
codes.

All these studies concentrated on techniques to convert
functional-level control programs into logic circuits. In con-
trast, this study deals with control programs at the lowest
level: PLC instruction sequence. Although it is more diffi-
cult to analyze, our scheme would be applicable to a wider
area of control programs. Moreover, our technique might be
expendable to the instruction sequence of various embedded
Pprocessors.

Miyazawa et al.“” proposed a method to translate PLC
programs of ladder diagram (LD) into VHDL programs.
Welch and Carletta “? proposed an FPGA architecture, which
implements relay ladder logic directly. Du et al. ¥ presented
an optimization technique in LD-VHDL conversion.

Though the ladder diagram is almost equivalent to a PLC
instruction sequence, the above-mentioned studies only ex-
amined very fundamental logic functions such as AND, OR,
NOT, and flipflop, while providing no detailed discussion
about actual PLC applications. To the contrary, the present
study deals with advanced features of PLC that are required
in real-world applications, and presents quantitative evalua-
tion results.

A preliminary version of this study was presented in IEEE
ISIE 2006 ®. Major differences from the preliminary work
are summarized below.

e The converter was improved to generate better logic de-

signs, which require fewer cycles for each scan by reduc-
ing unnecessary states. The effects of this improvement

are perceived by comparing Tables 2 and 3 to the Tables
IT and III of the previous study .

o Evaluation platform was updated from an old APEX20KE
device ¥ to a new Stratix II device .

o Evaluation results were thoroughly updated with the new
converter and new FPGA platform.

e Productive industrial machinery was actually built with
an FPGA controller, whose logic design was generated
by our converter from PLC program.

The advantages of FPGA implementation of PLC program
were also presented by C. Economakos and G. Economakos
in the recent publications ¥ “®. More comments on their
works are found in Section 7.1.

3. Translation of PLC Program to Hardware De-
scription

3.1 Ladder Diagram The ladder diagram has been
widely accepted to describe PLC programs. A ladder dia-
gram consists of one or more rungs, each of which consists
of a condition part and a process part (Fig. 1). Either the con-
dition part or the process part can be an input/output (a) or an
instruction (b). The output of a rung is activated if the corre-
sponding input condition is satisfied; otherwise, the output is
deactivated. The instruction of a rung is executed if its input
condition is satisfied. Rungs are ordered, and interpreted in
due order.

A ladder diagram is executed in the following manner:

(1) Atthe beginning of a ladder, all inputs are collected
and stored into the corresponding internal memory el-
ements, which are read and modified by rungs (Input
phase).

(2) Rungs are interpreted in due order (Execution
phase).

(3) When the bottom of a ladder is reached, all output
ports are updated by the corresponding internal mem-
ory values (Output phase).

(4) The ladder is then executed all over again from the
input phase.

Repeated execution of the above-mentioned cycles is called
cyclic scan, and the period of cyclic scan is called scan time.
By making the scan time shorter, the system becomes more
responsive.

3.2 Translation of a Rung Figure 2 (a) illustrates
a rung of a ladder diagram for Mitsubishi Electric FX2N
PLC“", which is adopted as an evaluation platform in the
following discussion. A distinct advantage of FX2N PLC is
that its instruction set specifications are open to the public *®.

FX2N instruction set includes 160 instructions with var-
ious types of operands: e.g., switch X, coil Y, internal re-
lay M, data register D, constant K, and timer T. In Fig. 2,
the switches X001 and X002 correspond to start switch and
stop switch, respectively. The slash on X002 denotes neg-
ative logic. If X001 is on and X002 is off, the output coil
Y001 is turned on; this results in X001 bypassed, and thus
Y001 holds while X002 is off. If X002 is turned on, Y001
is inactivated. This logic is called self-holding logic. The
rung (a) is translated into the instruction sequence shown in
Fig. 2 (b), while this control logic can be translated into the
corresponding logic circuit (Fig. 2 (c)).

Another example is shown in Fig. 3, where the process part
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Fig.2. An example of FX2N PLC program: self-holding logic. ® ((¢)2006 IEEE)
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of arung is an arithmetic instruction. In this case, an ADD in-
struction is translated into an adder, whose output is captured
by a register if the corresponding condition is satisfied.

Our experimental converter generates a VHDL source code
from an instruction sequence of FX2N. The supported in-
structions include 23 basic programming instructions (out of
27) and 13 applied instructions (out of 133), which are sum-
marized in Table 1. This list is not long, but includes enough
instructions for the following evaluations. The authors are
still extending the list of supported instructions, basically
on a demand-driven basis to support real-world control pro-
grams.

3.3 Sequential Design  To generate a logic circuit
that literally simulates a whole ladder program, it is straight-
forward to design a sequential circuit, which activates one
rung for each cycle in due order. This design is illustrated in
Fig. 4, and is designated by Sequential design in the follow-
ing discussion.

Although Sequential design reproduces the exact behavior
of a ladder program, it requires p+2 cycles for each scan.
Here, p is the the number of rungs of a ladder, and two ad-
ditional cycles are required for input phase and output phase
described in Section 2. The circuit is driven by (p+2)-phase
non-overlapping clocks (¢o, ..., $p+1).

For further reduction of scan time, it is essential to utilize
parallelism in the control program.

3.4 Levelized Design It is possible to execute two or
more rungs in parallel, as a superscalar microprocessor does,
if dependencies among rungs are properly maintained. Fig-
ure 5 (a) shows an example of data dependence, where the
output of the upper rung is referred by the lower rung. In
Fig. 5 (b), the input of the upper rung is overwritten by the
lower rung (anti-dependence). Figure 5 (c) shows an example
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of output dependence, or double coiling ", where the output
of the upper rung is overwritten by the lower rung. In any of
these cases, it is essential to execute the upper rung before the
lower rung to derive the same result as in the original ladder
diagram.

Dispatching each rung to the earliest cycle possible (while
keeping all dependencies), we can reduce the clock cycles
required for each scan. In this study, we simply levelize
rungs according to their dependencies, as in levelized com-
piled code simulation of a logic circuit"”. The rungs that
have no preceding rungs are labeled by Level;, and the
rungs that are dependent on Level;, Level;, ... are labeled



Table 1. Supported instructions.

Category ‘

Mnemonic

Basic instructions

LD (LD=), LDI, LDP, LDF, AND (AND=), ANI, OR, ORI, ANP, ANF, ORP, ORF, ANB, ORB, MC, MCR, OUT, SET, RST, PLS, PLF, NOP, END

Applied instructions | MOV (DMOV), ADD (DADD), SUB (DSUB), MUL (DMUL), DIV (DDIV), TO (DTO), FROM (DFROM), BMOV, WAND, ROL, ZRST, HEX, INC

by Levelmax(i,j,..)+1- We can emulate a ladder by a sequen-
tial circuit, which activates the input phase at Cycley, the
rungs of Level; at C'ycle;, and the output phase at C'ycley 1,
where A is the maximal level of rungs. Thus, the number of
cycles for each scan would be A + 2 in this circuit. This de-
sign is illustrated in Fig. 6, which is designated by Levelized
design in the following discussion.

3.5 Flat Design Sequential design activates the cir-
cuit of each rung, one for each cycle, in due order. Lev-
elized design activates the circuit block of each level, one
for each cycle, from upstream to downstream. This brings up
the question of why it is implemented by a sequential logic
circuit at all. It is not necessary to split the execution phase
into cycles, because the inputs and outputs are updated only
at the end of each scan.

In fact, it is possible to implement the execution phase by
a combinatorial logic circuit. Let us examine Levelized de-
sign as an example. The input data of Level; circuit are fed
from Level; (0 < ¢ < j) in Levelized design. When the
process part of a rung at Level; is an output, we can sim-
ply remove the internal memory element of this output, and
feed data downstream by wire. When the process part is an
arithmetic instruction, we have to replace the memory ele-
ment by a multiplexer, which feeds data downstream. Since
the instruction might or might not take place depending on
the value of its condition part, a multiplexer is required to se-
lect either the new value (generated at Level;) or the original
value (fed from Level;). The execution phase could thus be
converted into a combinatorial logic circuit.

The input and output phases are also redundant. In Se-
quential and Levelized designs, two cycles are consumed for
input and output phases. Since the inputs are always updated
just after the outputs, the input phase and output phase can be
unified to one cycle.

Taking these two ideas together, each scan could be per-
formed in one cycle. The derived design is illustrated in
Fig. 7, which is designated by Flat design in the following
discussion. Flat design is expected to be faster than Levelized
design for the following reason. The scan time of Levelized
design ¢, is given by t; = (A 4+ 2) max; J;, where J; is the
maximal delay of Stage; (the circuit of Level;). Assum-
ing that the difference in logic is negligible, the scan time
of Flat design ¢ is expected to be shorter than ¢;, because
ty < ¥;0; < Amax;d; < t; holds. In many cases, Flat
design would be much faster than Levelized design, because
ty < ¥;6; usually holds. Another advantage of Flat design
is that CAD software is generally good at optimizing combi-
natorial logic circuits, compared to sequential circuits.

3.6 Resource Restriction  Though scan time is very
important, the logic scale of control circuit is equally impor-

t Strictly speaking, the unification of input phase and output phase
may cause trouble, wherever there exists an external loopback from
output to input. Such design is rather exceptional, and should be
avoided to assure high performance.

tant for practical applications. Particularly in translating a
large control program, it is essential to restrict resource us-
age. In this section, we discuss the circuit generation with
resource restriction.

In the above-mentioned designs, each instruction is trans-
lated into its hardware counterpart, and the consequent cir-
cuit contains as many components as instructions. A logic
operation does not cost much, because it is implemented by a
bitwise circuit. Meanwhile, an arithmetic instruction matters
very much, because it requires a 16-bit or 32-bit wide arith-
metic unit. Thus, it is very important to restrict the number
of arithmetic units by sharing them among instructions.

In Sequential design, it is very easy to share arithmetic
units, because only one rung is activated in each cycle. It is
enough to generate one arithmetic unit for each kind of arith-
metic operation, if its input is multiplexed and its output is
redirected properly. In the following discussion, this design
is designated by shared arithmetic units. It should be noted
that a shared design might incur a significant amount of hard-
ware for the input multiplexers and output interconnects in
exchange for reduction of arithmetic units. The original de-
sign, which generates as many arithmetic units as arithmetic
instructions, is designated by dedicated in the following dis-
cussion.

In Levelized design, resource limitations of an arithmetic
unit may affect the scheduling of rungs, which can result in
the increase of clock cycles. It is thus necessary to choose
a good resource scheduling algorithm to minimize the scan
time. This problem is a type of multiprocessor scheduling
problem ©” ®V which is generally difficult to solve. Though a
simple list scheduling was implemented in this study, other
algorithms should be investigated in future studies.

3.7 Optimization Issues Though there are many
possible optimizations, we left most of them for future stud-
ies, and concentrated on evaluating the fundamental aspects
of this method. The following are some items for future at-
tention.

The first issue is the optimization of instruction sequence.
In this study, our converter literally translates an instruction
sequence into the corresponding logic description. How-
ever, it is possible to generate a better logic circuit by ana-
lyzing and rewriting the instruction sequence. For example,
the sum of four values a, b, ¢, d can be calculated by either
((a+b)+c)+dor (a+b)+ (c+d). Literally converted, the
former would result in a cascade of three adders, while the
latter would be a balanced tree of three adders. Generating a
balanced tree of adders from the former instruction sequence
is left for future studies.

Area-Time trade-off is another important issue. Although
some results are shown in the following evaluation, automatic
exploration of the best trade-off is beyond the scope of this
work.

IEEJ Trans. XX, Vol.xxx, No.xx, XXXx
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Table 2. Evaluation results of a PID controller program.

Arithmetic | Num. of | Max. Freq. | Logic Scale | Memory DSP Scan time
Device Design unit states [MHz] [ALUT] [bit] elements [s]

PLC - - - - - - - 7.98 x 10~ 2
FPGA | Sequential | dedicated 12 108.57 486 0 24 1.11 x 10~ 7
shared x 1 12 87.63 479 0 8 1.37 x 1077

Levelized | dedicated 9 113.51 480 0 24 7.93 x 10~
shared x 1 9 88.32 475 0 8 1.02 x 1077
Flat dedicated 1 61.90 448 0 24 1.62 x 10~

Table 3. Evaluation results of a sample ladder program.
Arithmetic | Num. of | Max. Freq. | Logic Scale | Memory DSP Scan time
Device Design unit states [MHz] [ALUT] [bit] elements [s]

PLC - - - - - - - 1.61 x 1073
FPGA | Sequential | dedicated 74 8.47 5850 1280 56 8.74 x 1076
shared x 1 74 6.50 2859 1280 8 1.14 x 107°
Levelized | dedicated 12 8.00 5681 0 56 1.50 x 10~°
shared x 1 17 6.81 2704 0 8 2.50 x 107°
shared x2 14 6.48 3961 0 16 2.16 x 1076
shared x 3 13 6.35 5010 0 24 2.05 x 1076
shared x4 12 6.57 6309 0 32 1.83 x 10~
Flat dedicated 1 5.00 4624 0 56 2.00 x 10~ 7

4. Evaluation Results

This section presents some evaluation results of two sam-
ple PLC programs. The evaluation flow is shown by bro-
ken lines in Figure 8. First, the scan time of PLC (H) is es-
timated from its instruction sequence (B) according to the
execution time for each instruction“”. Since the execution
time of each instruction is dependent on the value of the cor-
responding condition part, the worst case scan time is esti-
mated in this evaluation. The PLC instruction sequence is
then translated into the hardware description in VHDL by our
translator (C). This VHDL description is processed by Altera
Quartus II 6.0 SP1 software to generate an FPGA design for
Altera Stratix II FPGA . In this study, the target device was
set to EP2S60F672CSES with 48352 ALUTs (adaptive look-
up tables), 2.4 Mbit RAM, and 288 DSP elements.'" The
optimization options of Quartus II were set to default. The
scan time of FPGA (I) is calculated by dividing the number
of states by the estimated maximum operational frequency of
the circuit.

4.1 PID controller Table 2 summarizes the evalua-
tion results of a PLC program which implements a simple
PID controller with 32-bit fixed point arithmetic. The PID
controller is classical, but has been frequently used in many
control applications to date. This PLC program includes 23
instructions, which include 4 add/subtract instructions and 3
multiply instructions.

FX2N PLC takes 798 usec for each scan of PID code, in
which 508 usec is consumed by END instruction. Since the
END instruction is placed to finish the current scan and to
carry out the process of updating outputs and inputs, 64%
of PLC scan time is consumed to update inputs and outputs.
In contrast, FPGA implementations can perform input/output
phases in one or two cycles, which results in very high re-
sponsiveness.

Sequential (dedicated) design is approximately 7200 times
faster than FX2N PLC, yet requires only 486 ALUTs and 24

1 One DSP element correspond to a 9x9 multiplier, and eight DSP
elements correspond to a 36x36 multiplier.
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DSP elements. DSP elements are used here as the building
blocks of multipliers, which support multiply instructions.
Levelized (dedicated) design is 1.4 times faster than Sequen-
tial (dedicated) design, although the logic scale is almost the
same. Flat design is 4.9 and 6.9 times faster than the Lev-
elized (dedicated) and Sequential (dedicated) design, respec-
tively.

In Table 2, “shared xn” designates a design that includes
maximally n arithmetic units for each kind of arithmetic op-
eration. Though it is possible to set a different limitation for
each operation (e.g., 2 for adder and 1 for multiplier), we ap-
plied the same limit to all kinds of arithmetic operations in
this experiment.

In both Sequential (shared x 1) and Levelized (shared x 1)
designs, the usages of DSP elements were reduced from 24 to
8. This is rational, since the dedicated design includes three
multipliers that correspond to three multiply instructions in
the original PLC program, while the shared x1 design im-
plements a single multiplier. Although four adders are also
reduced to one, this reduction is canceled by the increase of
input multiplexers. Thus, the usage of ALUTs is almost equal
for the dedicated and shared x 1 designs.

It should be noted that the operational frequency may be
decreased by sharing resources, since additional components
are inserted in the data-path. In case of PID controller, the
respective overhead for resource sharing is 25% (Sequential)
and 29% (Levelized) in scan time.

The designs with more resources (shared x 2 or more) were
not examined for PID controller, since there is no resource
competition with a single arithmetic unit for each arithmetic
operation.

4.2 Practical Control Program Table 3 lists the
evaluation results of a sample PLC program, which was de-
rived from an actual product. This PLC program includes
165 instructions, which include 6 add/subtract instructions,
12 multiply instructions, and 9 divide instructions.

Sequential (dedicated) design is approximately 184 times
faster than FX2N PLC. Although Sequential (dedicated) and
Levelized (dedicated) designs are almost the same in maxi-



mum operational frequency and logic scale, Levelized (ded-
icated) design is 5.8 times faster than Sequential (dedicated)
design. Flat design is even 7.5 times faster than Levelized
(dedicated) design, yetits ALUT usage is 19% smaller. Com-
pared to PLC, Flat design achieves 8050 times higher perfor-
mance, using only 4624 ALUTSs and 56 DSP elements.

As stated in Section 3.6, shared designs require more cy-
cles than the corresponding dedicated design for each scan.
The operational frequencies are also smaller than that of the
dedicated design. All these result in larger scan times of
shared designs.

However, the reduction of hardware resources is larger in
this program than in the PID controller. Sequential (shared
x1) achieved 51% reduction of ALUTs, while reducing
86% of DSP elements. Levelized (shared x1) design also
achieved 52% reduction of ALUTS, while reducing 86% of
DSP elements. Levelized (shared x2 or more) were faster
than Levelized (shared x1) accordingly, in exchange for in-
creased logic resources.

Sequential designs are distinct from other designs in mem-
ory usage, since the embedded RAM modules are utilized
only in Sequential designs. These RAMs are not explicitly
used in any designs; they are adopted automatically by the
logic synthesizer.

In logic synthesis, a number of registers might be aggre-
gated into a single memory module, if these registers are
not accessed simultaneously. Since the embedded RAMs are
highly integrated, the implementation cost might be reduced
by aggregating many registers into RAMs. The logic syn-
thesizer automatically chooses registers or RAMs for imple-
mentation as the case may be.

In Sequential designs, only one output register is writ-
ten in each cycle, while most registers are only read a few
times in each scan. As a result, the logic synthesizer adopted
embedded RAM for implementation. In Levelized designs,
more rungs are processed in parallel, and thus more regis-
ters are read and written in parallel. Consequently, regis-
ters were chosen for implementation by the logic synthesizer.
Such choice is dependent on each individual case; in fact, no
RAMs were adopted in the PID controller implementations
(cf. Table 2).

5. Design Framework

Figure 8 illustrates the framework of tools available to
translate, integrate, and implement the logic circuit of a con-
trol system onto an FPGA. In Fig. 8, double rectangles des-
ignate three tools implemented by the authors. The solid-line
arrows designate the path to generate logic circuit from con-
trol logic, while the dotted-line arrows designate the path for
performance evaluation.

A ladder program is designed with Mitsubishi GX Works
software (step A in Fig. 8), and then translated into an in-
struction sequence with GX Converter (B). As described
in Sect. 3, our translation tool translates the instruction se-
quence into the hardware design described in VHDL (C).
Users may write the top-level design (F) by themselves, or
may prepare the interface description file (E) instead. The
top-level design can be generated from the interface descrip-
tion by our interface logic generation tool. In this exam-
ple, the top-level design includes a library component STPG,

Fig.9. SPMO05-02: a perfect layer winder system with
an FPGA control board.

which is a peripheral device of FX2N PLC.

Even if a PLC program could be translated into hardware,
it does not work without peripheral devices. To achieve a
higher level of integration, it is essential to integrate periph-
eral devices on an FPGA together with the control logic cir-
cuit. Thus, the authors prepared a control logic library, which
includes (1) various components to replace peripheral de-
vices of PLC, (2) template circuits that correspond to PLC
instructions, and (3) some support functions. In this exam-
ple, a programmable pulse generator STPG (D) is extracted
from the peripheral library. Finally, Altera Quartus II soft-
ware processes a top-level design (F), a control logic (C), and
a peripheral component (D) to generate a bitstream, which is
downloaded onto a target FPGA (G).

It is worth integrating a microprocessor core into the
FPGA, because actual control systems include many parts
that are not necessarily implemented in a logic circuit, e.g.,
user interface, network communication, etc. In such a case,
most soft real-time tasks would be handled by a micropro-
cessor, while hard real-time tasks are translated into a custom
circuit, which might be attached as a peripheral device of a
microprocessor.

Another prospective option is the use of C-based hardware
design tools, which provides a higher-level of abstraction.
Some of the topics discussed in this paper, e.g., dependency
analysis and resource scheduling, might be handled by those
higher-level tools.

Meanwhile, in this study, conventional VHDL tools were
adopted by the following reasons.

e When we began this project, C-based tools were still im-

mature and did not fulfill our requirements.

e We had to control the designs directly to evaluate the
various design options quantitatively, instead of leaving
them to design tools.

C-based design tools will be a practical choice hereafter,
since they are rapidly improving in quality and reliability.

6. Experimental System

The authors developed a “perfect layer winder” (Fig. 9) in
conjunction with Yashima Netsugaku Co., Ltd. ®®, which is a
specialty manufacturer of various fiber winders. This winder
has practical specifications for a fully automated operation;
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Table 4. The specifications of TUTFA-CYCII-FL

FPGA device | Altera Cyclone II EP2C8F256
(EP2C20F256 is also available)

Inputs 25 ch. (photo-isolated),

4 ch. (high-speed, photo-isolated),

4 ch. (differential, SN75175)

Outputs 40 ch. (photo-isolated, open-collector),
4 ch. (high-speed, photo-isolated, open-collector),
4 ch. (differential, SN75174),

2 ch. (analog, DC110V)

Misc. 4 ch. RS-232C (D-sub 9 pin),

1/0 extensions (50 pin and 40 pin)

for example, it automatically changes the bobbin with tur-
ret. The control program was originally developed with Mit-
subishi FX2N PLC, and then it was converted to VHDL by
our converter.

It is practically difficult to make our converter fully com-
patible with FX2N PLC system, since it includes numerous
instructions and peripheral devices. Therefore, we slightly
reduced the optional features of the control program for the
FPGA implementation, while sustaining the essential fea-
tures. The omitted features include interactive user interface
for parameter settings, automatic detection of fiber thickness,
etc. This wider system successfully operated with FPGA
control board to control various kinds of sensors and actu-
ators.

Since we could not find any commercial FPGA board
that fulfills our requirements, we designed and manufactured
a new FPGA board for control applications in conjunction
with Factory-Automation Electronics Inc.* Figure 10 dis-
plays the photographic image of our board, TUTFA-CYCII-
FI, which consists of two parts; FPGA mezzanine card and
I/O card. FPGA mezzanine card has an Altera Cyclone II
FPGA ® and power supply ICs on board. I/O card imple-
ments various I/O devices and connectors. The specifications
of TUTFA-CYCII-FI are summarized in Table 4.

7. Discussion
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Fig.10. TUTFA-CYCII-FI: an FPGA control board
with an Altera Cyclone II device and various I/O
channels.

7.1 Comments on Recent Publications C. Econo-
makos and G. Economakos ™ “® followed our previous
study @, and added a few items to the advantages of FPGA
implementation of PLC program. They evaluated control
programs using C-based design tools, and verified the signif-
icant advantages of FPGAs in both fixed-point and floating-
point applications. Their original contributions include (1)
the quantitative evaluation of floating-point arithmetic opera-
tions, (2) the automatic exploration of the best design alterna-
tives, and (3) various design options for higher performance.

Economakos’s studies aim to automate the optimization of
design, and apply various design options mechanically to ex-
amine possible options. The problem is that such strategy
may generate many impractical designs, which does not sat-
isfy the constraints imposed by I/O devices.

A simple example of this problem is the pipelining of cir-
cuits ™ "9 Though the pipelined circuit may achieve higher



throughput, it has a larger latency than the original. A stream
signal processing application might not be affected by this
additional latency, while a feedback control application eas-
ily collapses by the additional latency.

In sequence control applications, it is generally essential to
maintain the sequence and the timing constraints of I/O sig-
nals. The wrong sequence may lead to a malfunction or a me-
chanical breakdown to end up with a serious accident. These
constraints are not explicitly given, but are implicitly imple-
mented in the logic of PLC program. Thus, the only practical
strategy is to preserve the sequence of I/O signals when a
PLC program is converted into the corresponding circuit. If
the sequence is not preserved, it is practically impossible to
guarantee the proper control on the I/O devices.

Our tool was carefully designed to preserve the sequence
of the original PLC program. Although our tool generates
conservative designs, the behaviors of these designs are quite
predictable and strictly preserve the order and context of in-
puts and outputs.

Despite all these problems, Economakos’s works pointed
out some interesting and productive topics. Economakos’s
works augment our work in many aspects, though they never
replace ours.

7.2 Comments on Performance Advantage In Sec-
tion 4, the performance advantages of our FPGA implemen-
tations were presented over PLC implementations. Although
the advantages were outstanding, the evaluation was based
on a single PLC product. The performance advantage might
be offset by using other faster PLCs.

Mitsubishi Electric Corporation has two types of PLCs in
their product line: MELSEC-Q series and MELSEC-F se-
ries. Our evaluation platform is FX2N, which belongs to F
series and executes a basic operation (e.g., AND) in 80 ns 7.
Meanwhile, the current fastest PLC of Mitsubishi is Q26U
in Q series, which executes an AND instruction in 9.5 ns ®.
According to the brochure ®?, Q26U is the fastest PLC on the
market in February 2009.

Roughly estimating, a Q26U PLC is expected to be 8-
10 times faster than an FX2N PLC, while our Sequential
(dedicated) and Flat designs are 184 and 8050 times faster
than FX2N, respectively. Though the performance advantage
might depend on the combination of FPGA device and PLC
product, the advantage of FPGA implementation looks quite
evident.

8. Conclusion

This study outlined a systematic method to implement a
hard-wired sequence control from PLC software, which in-
cludes a converter that translates PLC instruction sequence
into logic description, a control logic library to support vari-
ous PLC instructions and peripheral devices, a design frame-
work that integrates control logic and peripheral functions on
an FPGA chip, and an experimental FPGA control board.

To show the advantages of our method, two sample lad-
der programs were examined and evaluated for Mitsubishi
FX2N PLC and Altera Stratix Il FPGA. Various logic designs
of these ladder programs were investigated, and shown to fit
into an off-the-shelf FPGA chip. The performance advantage
over PLC technology was obvious. In case of a productive
ladder program, Sequential design was estimated to be 184

times faster than PLC, and Flat design was 44 times faster
than Sequential design (i.e., 8050 times faster than PLC).

A perfect layer winder system was actually built with our
FPGA control board, whose logic design was generated by
our design framework. This winder system successfully op-
erated and exhibited the advantages of our scheme.

The following items are left for future study.

e More examples of control programs should be examined

for a wide range of applications.

e The converter should be enhanced to support more con-

trol functions.

e The converter should be enhanced for more performance

optimization.

e The converter should be enhanced to support more PLC

platforms.

e Our design framework should be enhanced to work with

embedded processors on FPGA devices.

Many old control systems are forced to abolition or re-
implementation by the discontinuation of essential parts. Our
framework might be useful for such situations.
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