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SUMMARY

The performance of a conventional parallel application is often degraded by load-imbalance on
heterogeneous clusters. Though it is simple to invoke multiple processes on fast PEs to alleviate load-
imbalance, the optimal process allocation is not obvious. Kishimoto and Ichikawa presented performance
models for HPL (High Performance Linpack), with which the sub-optimal configurations of heterogeneous
clusters were actually estimated. Their results on HPL are encouraging, whereas their approach is not
yet verified with other applications. This study presents some enhancements of Kishimoto’s scheme,
which are evaluated with four typical scientific applications: CFD (computational fluid dynamics), FEM
(finite element method), HPL (linear algebraic system), and FFT (fast Fourier transform). According to
our experiments, our new models (NP-T models) are superior to Kishimoto’s models, particularly when
non-negative least squares (NNLS) method is used for parameter extraction. The average errors of the
derived models were 0.2% for CFD benchmark, 2% for FEM benchmark, 1% for HPL, and 28% for
FFT benchmark. This study also emphasizes the importance of predictability in clusters, listing practical
examples derived from our work.
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2 S. ICHIKAWA ET AL.

1. Introduction

PC clusters have been widely adopted for scientific and technological computation, from small-scale
parallel computing up to supercomputing. Quick and drastic advances in microprocessor technology
have supported the advantages of PC clusters, while it simultaneously means that the nodes of PC
clusters become obsolete in a very short period of time.

It is thus necessary to continually upgrade the nodes of the PC cluster to keep the cluster competitive
and up-to-date, though it requires a substantial budget each time. On the other hand, there are certain
demands to maintain the same platform for a certain period. There are always some users who prefer
to stay with the existing cluster to avoid the cost of migration, even if others are eager to move to a
new cluster for more performance. A practical solution is to add a new cluster that consists of new
processors, while keeping the old cluster as long as it is worthwhile.

The resulting cluster becomes heterogeneous. It consists of two or more generations of clusters
(sub-clusters), each of which consists of homogeneous processing elements (PEs). Users may use a
homogeneous sub-cluster as before, or the whole heterogeneous cluster for maximal computational
resources.

Many existing applications are written for distributed memory parallel computers or clusters,
which consist of homogeneous processing elements. Since these applications distribute computational
workloads equally among PEs, their performances are degraded on a heterogeneous cluster by load-
imbalance.

Invoking multiple processes on fast PEs (multiprocessing scheme) is a simple and straightforward
way to alleviate load-imbalance of parallel applications on heterogeneous clusters. The multiprocessing
scheme basically requires no modification of source codes, while providing a reasonable speedup by
configuring cluster middleware appropriately.

Despite all these advantages, it is not an easy task to find the optimal process allocation for a
multiprocessing scheme. The first problem is that the performance ratio between PEs is not always an
integer, while the number of processes is always an integer. The multiprocessing overhead in each PE
makes things even more complicated. Another serious problem is communication time. It is not always
preferable to use all available PEs, because superfluous communications can prolong the total execution
time. Particularly in a heterogeneous cluster, the use of the slowest PEs is not always reasonable. It is
thus very important to select the optimal subset of PEs for a given problem size, together with finding
the optimal number of processes on each PEs.

Kishimoto and Ichikawa [1][2] presented a scheme to estimate the optimal configuration of a
heterogeneous cluster, i.e., the optimal subset of PEs and the optimal process allocation. They
constructed the execution-time estimation models from the measurement results of HPL (High
Performance Linpack) [3], and showed that the optimal or sub-optimal configurations were actually
estimated for various sizes of HPL. Although these studies [1][2] presented some promising results,
they are specific to an application. More parallel applications have to be examined to verify the
feasibility of the multiprocessing scheme.

The present study examines the multiprocessing scheme with four conventional parallel applications:
a CFD (computational fluid dynamics) benchmark, an FEM (finite element method) benchmark, a HPL
(linear algebraic system) benchmark, and an FFT (fast Fourier transform) benchmark. We use popular
benchmark programs, because (1) they are designed to be fair measures of system performance, (2)
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OPTIMIZING FOR HETEROGENEOUS CLUSTERS 3

typical examples of important scientific applications, (3) portable and thoroughly verified, and (4)
readily available for public use.

In this study, we apply Kishimoto’s models (N-T and P-T models) [1][2] to these four applications,
and further propose some improvements, including a new model (NP-T model) that is superior to
Kishimoto’s.

The rest of this paper is organized as follows. Section 2 outlines the background and related studies
of this work. Section 3 introduces the target applications that are examined in this study. Section 4 then
outlines Kishimoto’s models and our new model. The evaluation results are summarized in Section 5,
and some discussions are added in Section 6. Section 7 emphasizes the importance of predictability
issues, listing the checkpoints to build a well-behaved cluster with practical examples.

2. Background and Related Studies

There have been many attempts to rewrite existing parallel applications for heterogeneous clusters.
Typically, the applications for heterogeneous clusters are designed to distribute one process to each PE,
where each process handles heterogeneous computational workload according to PE performance. This
strategy is called HoHe (Homogeneous distribution of processes of parallel program over processors
with Heterogeneous distribution of data over processes) in Kalinov’s terminology [4].

Some examples of HoHe strategy are found in the following studies. Kalinov and Lastovetsky [5]
presented a “heterogeneous block cyclic distribution” for the Cholesky factorization of square dense
matrices. Beaumont et al. [6] reported a “2D heterogeneous grid allocation” for the heterogeneous
cluster ScaLAPACK [7]. Legrand et al. [8] investigated the mapping of various iterative algorithms onto
heterogeneous clusters. Ohtaki et al. [9] proposed a parallel Strassen’s matrix multiplication algorithm
for heterogeneous clusters.

A serious problem of HoHe strategy is that it is very costly to redesign the existing application. The
derived application tends to be more complex than the original, which implies that much effort would
be required to establish high performance and reliability. Moreover, such effort must be repeated for
each application. Though the HoHe strategy might be suited to derive the maximum performance
possible from a heterogeneous cluster, it is sometimes very difficult to optimize the total execution
time considering communication time, since the optimal distribution of computational workload does
not immediately mean that the total execution time is minimal.

Meanwhile, a multiprocessing approach basically requires no modification of the application
program; just by modifying the configuration file of cluster/communication middleware, we can derive
a reasonable speedup. This scheme might be applicable to commercial applications, which are usually
distributed without source codes. The multiprocessing approach does not aim to extract the maximum
performance from a heterogeneous cluster, but seeks rather to provide an easy and simple way to
accelerate a wide range of conventional parallel applications in heterogeneous clusters.

The multiprocessing approach is called HeHo strategy in Kalinov’s terminology [4], which stands
for Heterogeneous distribution of processes of parallel program over processors with Homogeneous
distribution of data over processes. Besides Kishimoto and Ichikawa’s work [1][2], there are some
recent studies on this strategy. Kalinov [4], for example, presented an algorithm that computes the
optimal number of processes and their distribution over processors minimizing execution time. Though
Kalinov’s algorithm is based on idealized time functions, an actual application (3D modeling of
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4 S. ICHIKAWA ET AL.

supernova explosion) was examined. Cuenca et al. [10] discussed heuristics for load-balancing based
on heterogeneous allocation of processes, each of which deals with the same amount of data. Though
their scheme is general, their experimental results involve a single application (linear algebra routines).
Despite these preceding studies, the advantages and limitations of HeHo strategy are not yet fully
explored. This study throws light on about some of these issues by exhibiting the quantitative evaluation
results with four popular benchmark programs.

Many studies have focused on the execution time modeling of parallel computation. Culler et al. [11]
presented the LogP model, which characterizes a parallel machine by the number of processors (P ),
the communication bandwidth (g), the communication delay (L), and the communication overhead (o).
Alexandrov et al. [12] presented the LogGP model, which extends the LogP model by incorporating
long messages. LoPC [13] and LoGPC [14] by Frank et al. further extended the LogP and LogGP
models with a model of network contention delay. All these models are constructed for conventional
parallel computers, where all processing elements are equivalent. The present investigation, on the
other hand, deals with heterogeneous clusters, which consist of different processing elements.

The models for heterogeneous clusters are still not fully explored. Lastovetsky et al. [15]
recently presented a communication model for heterogeneous clusters, which can handle fundamental
communication patterns. However, the behavior of an actual application is complicated, and its
execution time is largely affected by various overheads such as blocking and synchronization. Process
scheduling makes things even more complicated, particularly in the HeHo strategy in which multiple
processes interact with each other. Modeling the execution time of such an environment is an unsolved
problem, which seems very difficult.

In this study, we thus start with the simple models shown in Section 4, and concentrate on
baseline evaluations from an empirical and practical standpoint. Simpler models are effective, if they
can provide estimations good enough for practical applications. Actually, as shown in Section 5,
even our simple models can estimate sub-optimal configurations to a certain extent. Though further
improvements of models are desirable, they are beyond the scope of the current study.

3. Benchmark Programs

Although many benchmark programs are written for a fixed and small size computation, such
benchmarks do not reflect the practical performance of the system. Benchmark programs must be
scalable, if they are going to be used for performance prediction [16]. In this study, benchmark
programs that can handle arbitrary problem sizes were selected for experiments.

The Himeno benchmark [17] was originally developed to evaluate the performance of
incompressible Navier-Stokes solver in fluid analysis code. It measures the performance of a kernel,
which solves a pressure Poisson equation with Jacobi iteration. Recently, the Himeno benchmark has
been widely used as an HPC benchmark for supercomputers and clusters.

The FEM benchmark [18][19] was originally developed to measure the performance of 3D
linear elastic finite-element application for various types of architectures, e.g., Earth Simulator
[20][21], IBM SP3, Hitachi SR8000, and PC clusters. The benchmark kernel is based on a parallel
preconditioned Conjugate Gradient (CG) iterative solver with incomplete Cholesky (IC) factorization.
Though the FEM benchmark has many features for heterogeneous architectures (e.g., vector parallel
supercomputers), we adopt the simplest configuration for general PC clusters in this study.
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OPTIMIZING FOR HETEROGENEOUS CLUSTERS 5

HPL (High Performance Linpack) [3] is a portable implementation of the Linpack benchmark for
distributed-memory computers. HPL solves a random dense linear system of equations in double
precision floating-point arithmetic. HPL is widely acknowledged as the performance measure of the
TOP500 project [22], which periodically releases the ranking of supercomputers. HPL is also included
in the HPC Challenge benchmark suite [23]. HPL is included here to replicate Kishimoto’s results in a
new environment in contrast to other applications.

Fast Fourier Transform (FFT) is another important application in parallel computing. FFTE [24][25]
is a package to compute Discrete Fourier Transforms of 1-, 2-, and 3-dimensional sequences of length
2p × 3q × 5r. The 1-dimensional version of FFTE is included in the HPC Challenge benchmark suite
[23]. The FFTE benchmark measures the floating-point arithmetic rate of double precision complex
one-dimensional DFT.

With these benchmarks, we can generate binary codes for various sizes by changing the definitions
of sizes in header files and then recompiling their source codes. The execution time can be measured
without modifying the code, because these benchmark programs are self-timed. In other cases, a simple
wrapper program would be required to measure the elapsed time.

4. Methodology

4.1. Kishimoto’s models

This section outlines Kishimoto’s models, which are applied in the following experiments. More details
may be found in previous papers [1][2].

Let N be the size of the problem. A sub-cluster Gi is a group of PEs comprised of equivalent
PEs in a heterogeneous cluster, while Γ represents the number of sub-clusters that compose the
whole heterogeneous cluster. We construct models from the measurement results of each Gi; i.e., a
homogeneous sub-cluster is used to construct a model, as in the previous studies [1][2].

Let Pi be the number of PEs actually used for the job in Gi (0 ≤ Pi ≤ |Gi|). Mi is the
number of processes on each PE in Gi, if Pi 6= 0; Mi is zero, if Pi = 0. A configuration of a
heterogeneous cluster is defined by the set of Pi and Mi for all sub-clusters: i.e., (P1,M1, ..., PΓ,MΓ).
P represents the total number of processes in the cluster. When a configuration is given, P is calculated
by P =

∑
i PiMi.

Our goal is to build the execution time estimation model for each possible configuration. In other
words, it is to build models that estimate the execution time Ti of Gi from parameters N , P , and Mi.
The total execution time T is estimated by T = maxi Ti.

Each Ti can be estimated as a function of P and N . In case of HPL, the estimation function of Ti is
given by the following equation [1][2]:

Ti =
1
P
·O(N3) + P ·O(N2) + O(N2) (1)

Ti is thus represented by a cubic function of N for specific P and Mi:

Ti(N)|P,Mi
= k0N

3 + k1N
2 + k2N + k3 (2)
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6 S. ICHIKAWA ET AL.

for each possible configuration C = (P1,M1, ..., PΓ,MΓ)
Calculate P = ΣiPiMi

for each sub-cluster Gi

Calculate Ti for given N, P , and Mi

Calculate T = maxi Ti

Choose the configuration Copt that minimize T
return Copt as the estimated optimal configuration

Figure 1. A fundamental procedure to find the estimated optimal configuration for a given N .

This kind of model is designated as N-T model in the following discussions. The constant factors
k0, ..., k3 are determined from the measurement results by the least squares method.†

Each N-T model is constructed specific to a configuration (P and Mi). Though N-T models
can interpolate or extrapolate T from the size N , they are incapable of estimating T for other
configurations. Since it is not practical to manage many N-T models for every combination of
parameters, we integrate N-T models of the same Mi into a new model. Since this model includes
P as a variable, it is called a P-T model. For example, P-T models of HPL are represented by the
following equation, considering Eq. (1).

Ti(N, P )|Mi
= k4P · Ti(N)|P,Mi

+
k5

P
· Ti(N)|P,Mi

+ k6 (3)

Here, the constant factors k4, ..., k6 have to be extracted from the corresponding N-T models by the
least squares method. With P-T models, we can interpolate or extrapolate T from P , thus substantially
reducing the model construction time.

P-T models are adopted only for the case P > Mi, which also follows [1][2]. The case P = ∃Mi

is special in that the application is executed with a single processor, where no communication over a
network is involved. Therefore, N-T model is adopted when P = ∃Mi holds.

Though the above discussions were made for HPL, it should be noted that the estimation functions
of N-T and P-T models are dependent on the target application. The estimation functions for other
benchmarks will be found in Table V of Section 5.

Once we have constructed the models for every possible configuration, we can estimate the
optimal configuration for a given N by solving a combinatorial optimization problem that minimizes
the estimated execution time. Figure 1 outlines the fundamental procedure to find the estimated
optimal configuration. Although Figure 1 implements an exhaustive search, any pruning techniques
for combinatorial optimization can be applied to reduce the search time. Such techniques as branch-
and-bound or various heuristics would be particularly effective, when the number of configurations is
very large.

†In this study, we used GSL (GNU Scientific Library) [26] to extract parameters.
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OPTIMIZING FOR HETEROGENEOUS CLUSTERS 7

Table I. Details of four benchmark programs.

Benchmark Version Compile options
Himeno HimenoBMTxp C + MPI (static allocate version) -O2
FEM hpcmw-solver-test 1.00 -O
HPL 1.0a -O3 -funroll-loops -fomit-frame-pointer
FFTE 4.0 -O3 -fomit-frame-pointer

This is no more than an estimation based on models; therefore, the estimated optimal configuration
is not necessarily an actual optimal configuration. The quality of the estimated optimal configuration
may be evaluated by the estimation error ε, which is defined by ε = (τ̂ − T̂ )/T̂ . Here, τ̂ is the actual
execution time of the estimated optimal configuration, and T̂ is the actual execution time of the actual
optimal configuration. Since an estimation error ε is dependent on a specific problem size, we examine
the average estimation error ε̄ in the following discussion, where ε̄ is the average value of ε for various
sizes (N ).

4.2. NP-T model

Directly inducing from Eq. (1), the estimation equation of Ti for parameters N and P would be as
follows:

Ti(N, P )|Mi =
1
P

(k0N
3 + k1N

2 + k2N + k3) + P (k4N
2 + k5N + k6) + k7N

2 + k8N + k9 (4)

This equation includes 10 coefficients (k0, ..., k9), which can be determined from 10 or more
measurements using the least squares method. This new model is designated as NP-T model in this
study. NP-T models are adopted only for the case P > Mi as P-T models.

Though the usage of the NP-T model is the same as for the P-T model, the two models are not
equivalent. Kishimoto’s P-T model is an empirical approximation to integrate several N-T models into
one P-T model, while the NP-T model is naturally induced from Eq. (1).

NP-T model, as well as P-T model, can be constructed by measuring various configurations of Gi.
Though a P-T model contains only three coefficients, typically ν (|Gi|− 1) measurements are required
to construct a P-T model, where ν stands for the number of sizes (N ) to be measured for model
construction [1][2]. On the other hand, an NP-T model can be constructed by measuring 10 or more
configurations, which is smaller than ν(|Gi| − 1) in usual situations.

Since an NP-T model includes more coefficients than a P-T model, an NP-T model is intrinsically
more flexible than a P-T model. Thus, an NP-T model could be more precise than a P-T model, if it is
extracted from a sufficient number of measurements. On the other hand, an NP-T model might become
inaccurate, if the extracted parameters are not exact enough. Such pros and cons must be examined
quantitatively, based on the measurement results of actual applications on actual systems.
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8 S. ICHIKAWA ET AL.

Table II. Problem sizes N for model construction and model evaluation.

Benchmark Model construction Model evaluation
Himeno 32 ≤ N ≤ 192 (9 points) 32 ≤ N ≤ 256 (10 points)

FEM 70 ≤ N ≤ 504 (7 points) 70 ≤ N ≤ 660 (20 points)
HPL 400 ≤ N ≤ 6400 (9 points) 1600 ≤ N ≤ 9600 (7 points)
FFTE 212 ≤ N ≤ 220 (9 points) 216 ≤ N ≤ 223 (8 points)

Table III. Times [second] for measurements, model construction, and estimation of optimal
configuration for four benchmark programs using N-T, P-T, and NP-T models.

N-T model P-T model NP-T model
Meas. Const. Estim. Meas. Const. Estim. Meas. Const. Estim.

Himeno 1.19×102 1.24×100 1.40×10−1 9.88×100 1.12×101 4.00×10−2 9.88×100 4.26×100 9.00×10−2

FEM 2.08×105 7.58×100 1.00×10−1 2.22×104 3.85×100 2.00×10−2 2.22×104 3.44×100 3.00×10−2

HPL 3.34×104 4.95×100 3.20×10−1 2.38×103 1.33×100 5.00×10−2 2.38×103 3.43×100 2.00×10−2

FFTE 1.83×102 3.86×100 1.70×10−1 2.21×101 1.73×101 2.03×100 2.21×101 2.15×101 2.30×10−2

Table IV. Specifications of our heterogeneous cluster.

Subcluster G1 Subcluster G2 Subcluster G3

Processor Pentium 4 3.6 GHz Xeon 2.8 GHz Celeron M 1.5 GHz
|Gi| 8 16 8
OS FedoraCore 4 Redhat Linux 9 FedoraCore 3

Network 1000BASE-TX

5. Evaluation

In this section, the estimation models are constructed and evaluated for the four benchmarks stated
in Section 3. Their specifications are summarized in Table I, and the problem sizes N for model
construction and evaluation are summarized in Table II for each benchmark. Measurement time, model
construction time, and estimation time of optimal configurations are listed in Table III.

Table IV lists the specifications of the simple heterogeneous cluster used for the following
evaluations. For compilation, GNU GCC 3.2.2 and Intel Fortran Compiler 8.1 were adopted with
MPICH 1.2.6 as the MPI library.‡ In this cluster, all processing elements are connected by a single
wire-speed switch to exclude the effects of network topology and contention. Although it is important

‡MPICH 1.2.6 was compiled with the buffer size set to 8 KB, which is detailed in Section 7.4.
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OPTIMIZING FOR HETEROGENEOUS CLUSTERS 9

Table V. N-T, P-T, and NP-T models for four benchmark programs.

Benchmark Model Estimation equation
N-T Ti(N)|P,Mi = k0N3 + k1N2 + k2N + k3

Himeno P-T Ti(N, P )|Mi = k0
P
· Ti(N)|P,Mi + k1 + k2 log P

NP-T Ti(N, P )|Mi = 1
P

(k0N3 + k1N2 + k2N + k3) + k4N2 + k5N + k6 + k7 log P

N-T Ti(N)|P,Mi = k0N3 + k1N2 + k2N + k3

FEM P-T Ti(N, P )|Mi = k0
P
· Ti(N)|P,Mi + k1 + k2 log P

NP-T Ti(N, P )|Mi = 1
P

(k0N3 + k1N2 + k2N + k3) + k4N2 + k5N + k6 + k7 log P

N-T Ti(N)|P,Mi = k0N3 + k1N2 + k2N + k3

HPL P-T Ti(N, P )|Mi = k4P · Ti(N)|P,Mi + k5
P
· Ti(N)|P,Mi + k6

NP-T Ti(N, P )|Mi = 1
P

(k0N3 + k1N2 + k2N + k3) + P (k4N2 + k5N + k6) + k7N2 + k8N + k9

N-T Ti(N)|P,Mi = k0N log N + k1N + k2N
1
3 + k3

FFTE P-T Ti(N, P )|Mi = k0
P
· Ti(N)|P,Mi + k1P · Ti(N)|P,Mi + k2

NP-T Ti(N, P )|Mi = 1
P

(k0N log N + k1N + k2) + k3P + k4N + k5N
1
3 + k6

to examine the clusters of heterogeneous network configurations, they will be left for the following
studies.

5.1. Himeno benchmark

Himeno benchmark [17] deals with a domain of N × N × N . Its execution time mainly consists of
Jacobi iterations of 1

P ·O(N3) , data exchanges of O(N2), and collective communications (AllReduce)
of log P · O(1). Thus, the execution time of the Himeno benchmark is estimated by the following
equation:

T (N, P ) =
1
P
·O(N3) + O(N2) + log P ·O(1) (5)

N-T, P-T, and NP-T models are derived from the above estimation equation, and are summarized in
Table V.

Here, it should be noted that the communication time depends on both the algorithm and
implementation. For example, AllReduce was estimated to be log P · O(1) in Eq. (5), assuming that
a balanced-tree algorithm is adopted and the network does not form a bottleneck. However, it might
become P · O(1), if the communication is sequentialized by the algorithm, network contention, or
bandwidth limitation. Though this issue does not occur in our case (with a single-stage wire-speed
switch), all such issues have to be considered in modeling.

Measurements were conducted for 9 sizes (32 ≤ N ≤ 192) of Himeno benchmark with the 404
possible configurations listed in Table VI. The models were then constructed from these measurements,
and were applied to estimate the execution times of every possible configuration. The estimated optimal
execution times for N = 32, ..., 256 are plotted in Figure 2, where Optimal designates the execution
time of the actual optimal configuration of each size, which corresponds to T̂ defined in Section 4.1. N-
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10 S. ICHIKAWA ET AL.

Table VI. Configurations examined for Himeno, FEM, and HPL.

G1 G2 G3 Total
0 ≤ P1 ≤ 4 0 ≤ P2 ≤ 4 0 ≤ P3 ≤ 4 404
0 ≤ M1 ≤ 2 0 ≤ M2 ≤ 2 0 ≤ M3 ≤ 1
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Figure 2. Evaluation results of Himeno benchmark. Left graph displays the execution time of actual optimal
configuration (Optimal) and those of optimal configurations estimated by N-T, P-T, and NP-T models. Right

graph displays the corresponding estimation error (ε).

T, P-T and NP-T in Fig. 2 designate the actual execution times of the estimated optimal configurations
derived with N-T, P-T, and NP-T models, which correspond to τ̂ in Sect. 4.1.

As readily seen from Fig. 2, sub-optimal configurations were actually estimated using the N-T, P-T
and NP-T models. The respective average errors (ε̄) were 13%, 23%, and 25% for the N-T, P-T, and
NP-T models. Although ε̄ of P-T and NP-T are inferior to that of N-T, the difference is not large. This
difference is mainly caused by the error at N = 32, which is 0% for N-T, 123% for P-T, and 122% for
NP-T. This error does not matter practically, because the execution time is accordingly small for small
sizes. If the case N = 32 is excluded, respective average errors would be 15%, 12%, and 15% for the
N-T, P-T, and NP-T models. These values seem good enough for practical applications.

5.2. FEM benchmark

The FEM benchmark [18][19] originally deals with a three-dimensional domain of N ×N ×N , where
N must be a multiple of P . A two-dimensional domain, N ×N × 1, is measured in this study for the
restrictions of execution time and memory space.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–6
Prepared using cpeauth.cls

PREPRIN
T
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Figure 3. Evaluation results of FEM benchmark. Left graph displays the execution time of actual optimal
configuration (Optimal) and those of optimal configurations estimated by N-T, P-T, and NP-T models. Right

graph displays the corresponding estimation error (ε).

The execution time of the FEM benchmark consists of matrix-vector multiplications of 1
P ·O(N3),

vector inner-products of 1
P · O(N2), vector addition/subtractions of 1

P · O(N2), data exchange of
O(N2), and collective communications (AllReduce) of log P ·O(1). Thus, the execution time of FEM
benchmark is estimated by the following equation:

T (N, P ) =
1
P
·O(N3) + O(N2) + log P ·O(1) (6)

The models derived for the FEM benchmark are summarized in Table V.
As stated above, N must be a multiple of P in the FEM benchmark. Though this restriction is very

natural from a programmer’s standpoint, it is crucial to both model construction and optimization. In
constructing a model for a specific set of P and Mi, we cannot use arbitrary sizes but must choose the
multiples of the specified P . This means that we generally have to use a different set of problem sizes
for the models of different P . In estimating the optimal configuration for a given size N , we cannot
examine arbitrary configurations but can only use the models whose P is a factor of the specified N .
This means that the search space of optimization is greatly restricted. All these factors may affect the
accuracy of optimization.

Figure 3 plots the evaluation results of the FEM benchmark. Measured problem sizes and
configurations are summarized in Tables II and VI. As readily seen, sub-optimal configurations were
successfully estimated using the N-T, P-T and NP-T models. The respective average errors (ε̄) were
47%, 34%, and 33% for the N-T, P-T, and NP-T models. Though these values are not quite satisfactory,
most of the errors are caused by the estimations for two small sizes (N = 70 and 72) as readily seen
in Fig. 3. Excluding these two sizes, the respective average errors become 23%, 18%, and 15% for the
N-T, P-T, and NP-T models, which is practical and on a par with the Himeno benchmark. Despite the
restriction between N and P , our models were shown to be practical for the FEM benchmark.
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Figure 4. Evaluation results of HPL benchmark. Left graph displays the execution time of actual optimal
configuration (Optimal) and those of optimal configurations estimated by N-T, P-T, and NP-T models. Right

graph displays the corresponding estimation error (ε).

Although the errors in small sizes do not matter practically, it is desirable to construct more precise
models for arbitrary sizes. Section 5.7 will describe an application-specific technique, which can be
used to construct NP-T models whose ε̄ is 19% for all sizes.

5.3. HPL

HPL solves a dense linear system of N variables with the following algorithms [3]:

• Two-dimensional block-cyclic data distribution,
• Right-looking variant of the LU factorization with row partial pivoting featuring multiple look-

ahead depths,
• Recursive panel factorization with pivot search and column broadcast combined,
• Various virtual panel broadcast topologies,
• Bandwidth reducing swap-broadcast algorithm,
• Backward substitution with look-ahead of depth 1.

The estimation equation for HPL is shown as Eq. (1) in Section 4, and the derived models are
summarized in Table V. In this study, ATLAS-3.6.0 [27] was adopted as the BLAS library. The process
grid was fixed to one-dimensional block cyclic as in the previous study [2].

Figure 4 displays the evaluation results of the HPL benchmark. Measured problem sizes and
configurations are summarized in Tables II and VI. As seen from Fig. 4, sub-optimal configurations
were estimated with N-T, P-T and NP-T models, where the respective average errors (ε̄) were 42%,
40%, and 23% for N-T, P-T, and NP-T models. It is readily seen that errors are larger in smaller sizes in
HPL, as well as in the Himeno and FEM benchmarks. Excluding the small sizes with execution times
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Table VII. Configurations examined for FFTE.

G1 G2 G3 Total
0 ≤ P1 ≤ 8 0 ≤ P2 ≤ 8 0 ≤ P3 ≤ 8 285
0 ≤ M1 ≤ 2 0 ≤ M2 ≤ 2 0 ≤ M3 ≤ 1
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Figure 5. Evaluation results on FFTE benchmark. Left graph displays the execution time of actual optimal
configuration (Optimal) and those of optimal configurations estimated by N-T, P-T, and NP-T models. Right

graph displays the corresponding estimation error (ε).

of less than 10 seconds, the average errors are reduced to as small as 17%, 36%, and 7% for N-T, P-T,
and NP-T models (4800 ≤ N ≤ 9600). In either case, the NP-T model looks reasonably accurate and
practical.

Although our evaluation environment is different from that of the previous studies [1][2], our results
basically confirmed and reproduced their results. Furthermore, our NP-T model was shown to be
superior to N-T and P-T models presented in previous studies.

5.4. FFTE benchmark

FFTE benchmark [24][25] measures the execution time of one-dimensional DFT of size N , where N
must be a multiple of P 2. In this study, we examine the cases where P is a power of 2, because FFTE
is written on this implicit assumption.

The execution time of FFTE consists of a fast Fourier transform of 1
P · O(N log N), factoring of

O(N), table preparations of O(N
1
3 ), and all-to-all communications of 1

P ·O(N)+P ·O(1). Thus, the
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Table VIII. Problem sizes N for P-T6, NP-T6, ..., P-T9, and NP-T9 models.

Model Model construction Model evaluation
P-T9, NP-T9 32 ≤ N ≤ 192 (9 points)
P-T8, NP-T8 32 ≤ N ≤ 160 (8 points) 32 ≤ N ≤ 256 (10 points)
P-T7, NP-T7 32 ≤ N ≤ 128 (7 points)
P-T6, NP-T6 32 ≤ N ≤ 112 (6 points)

execution time of FFTE is estimated by the following equation:

T (N, P ) =
1
P
·O(N log N) + O(N) + O(N

1
3 ) +

1
P
·O(N) + P ·O(1) (7)

The N-T, P-T, and NP-T models are derived from the above estimation equation, and are summarized
in Table V.

Figure 5 plots the evaluation results of the FFTE benchmark. Measured problem sizes are listed
in Table II, while possible configurations (Pi and Mi) are summarized in Table VII. Since the
execution time of FFTE benchmark is shorter than for the other three benchmarks, a twice larger
cluster (|Gi| = 8) was examined for FFTE than for the other three applications (|Gi| = 4). This makes
the estimation of optimal configuration much harder. Another difficulty of FFTE is that the all-to-all
communication is a dominant factor in the execution time. Considering these two factors, the result
shown in Fig. 5 can be interpreted as a worst-case evaluation of our scheme.

As readily seen from Fig. 5, the estimation errors for FFTE are larger than the other three
benchmarks. The average errors were 56%, 267%, and 129% for the N-T, P-T, and NP-T models,
respectively. As in the other three benchmarks, the errors are larger for smaller sizes. Excluding the
sizes whose optimal execution times are less than 0.1 second, the average errors are reduced to 96%,
92%, and 38% for N-T, P-T, and NP-T models (220 ≤ N ≤ 223). For large sizes, the NP-T models are
superior to the N-T and P-T models and looks reasonably accurate.

The residual errors of FFTE are still larger than other benchmarks, and are not quite satisfactory.
Further improvements are attempted in the following sections.

5.5. Robustness of models

As shown in the above sections, NP-T models have various advantages over P-T models. One of the
virtues of an NP-T model is that it can be constructed from fewer measurements than a P-T model.
This may lead to another advantage of NP-T models; an NP-T model might be more accurate than a
P-T when the number of measurements is not large enough. In other words, NP-T models are expected
to be more robust against the shortage of measurement results.

To verify this conjecture, the estimation errors of the Himeno benchmark were evaluated with various
P-T and NP-T models that were constructed from the measurements of various sizes, which are listed
in Table VIII. In the following discussion, P-T6 designates the P-T model that was constructed with 6
sizes of measurements, while NP-T9 designates the NP-T model constructed from 9 sizes.
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Figure 6. Estimation errors of P-T6, P-T7, P-T8, and P-T9 models in Himeno benchmark.
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Figure 7. Estimation errors of NP-T6, NP-T7, NP-T8, and NP-T9 models in Himeno benchmark.
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Figure 8. An example of measured performance of Himeno benchmark, where a performance anomaly exists at
N = 192.

The estimation errors of P-T and NP-T models are summarized in Figures 6 and 7. As readily seen,
P-T6 models failed in large sizes and yielded large errors. NP-T6, on the other hand, maintained good
accuracy in all sizes. All these results seem to support our conjecture.

In the smallest size (N = 32), the errors of P-T6 and NP-T6 are smaller than those of P-T9 and NP-
T9. However, this fact does not mean that P-T6 and NP-T6 are more accurate than P-T9 and NP-T9.
Rather, it should be understood that the weight of the size N = 32 is heavier in P-T6 and NP-T6 (one
of six) than in P-T9 and NP-T9 (one of nine). Thus, the derived models better fit the data at N = 32 in
P-T6 and NP-T6 than in P-T9 and NP-T9.

5.6. Performance anomalies

As stated in Section 5.1, the models for the Himeno benchmark were not quite satisfactory, in particular
for N = 32. Investigating the reasons for such estimation errors, many performance anomalies
(glitches) were found in the measurement results, which resulted in imprecise models.

Figure 8 displays an example of a performance glitch. Though the performance is expected to
increase monotonically as the size N increases, the performance of N = 192 is substantially lower
than expected. Figure 9 shows the measured execution times and the derived N-T model of the same
configuration as Fig. 8. Model (1) was extracted from all measurement results, while Model (2) was
extracted from the measurements except for the glitch at N = 192. As readily seen, Model (1) suffers
from a large error at N = 256, whereas Model (2) only incurs a modest error at N = 192. Thus, the
accuracy of models is much degraded by performance anomalies in the measurement results.

Such performance anomalies have various causes (e.g., cache thrashing), while they should be
avoided by programming techniques or compilation techniques (e.g., padding) [28][29][30]. However,
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Figure 9. Performance anomalies affect the model parameters extracted. Model (1) was extracted from all
measurement results, while Model (2) was extracted from the measurements excluding N = 192.

in this study, we accept the fact that such anomalies often exist in measurement results, and attempt to
reduce the average errors of models.

As the first step, we here examine a simple heuristic to evade glitches. The datum of size n is regarded
as a glitch and excluded from model construction, if the following condition holds: p(n) ≤ k · p(m).
Here, p(n) represents the performance (e.g., Mflops) of size n. The size m is the point of measurement,
which is nearest to and smaller than n. Constant factor k has to be determined empirically.

The average error of the model is expected to be improved by excluding glitches with an appropriate
k. On the other hand, the model might become imprecise or it might be impossible to construct the
corresponding model, if too many sizes are excluded from model construction. The appropriate value
of k is dependent on application and platform, and thus must be determined empirically.

With the Himeno benchmark, the average error of the NP-T models was improved from 25% to
13% by excluding glitches with k = 0.9. If the size N = 32 is additionally excluded, ε̄ of NP-T is
improved from 15% to 10% with this heuristic. Though exclusion of glitches worked very well for
the Himeno benchmark, it did not work with the HPL and FEM benchmarks. We observed that the
Himeno benchmark involves many glitches, while glitches scarcely appear in the results of the HPL
and FEM benchmarks. In case of FFTE, exclusion of glitches yielded no improvement, despite the fact
that several performance glitches are observed.

Considering all these facts, we concluded that exclusion of glitches is undoubtedly useful for certain
kinds of applications. Though it is not for all applications, it can be used optionally to improve the
models. Exclusion of glitches is solely a partial solution, and models should be improved for more
precise estimation. Such refinements will be made in the following sections.
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5.7. Simplification of estimation equation

As stated in Section 5.2, the average estimation error of FEM benchmark was 33% with the NP-T
model. Though the error for N ≥ 140 is no more than 15%, it is desirable to further reduce the error
for all sizes.

In the investigation of the estimation errors, a problem in estimation equation was identified. In our
evaluation environment, the collective communication takes only 100 ms, which is negligible in the
FEM benchmark. Though it is possible to extract parameters with the term of log P , such a model
often incurs a large estimation error caused by the erroneous coefficient in the log P term. This was the
cause of the large errors at small sizes in Fig. 3.

We thus examined a model whose log P term is omitted. The estimation equation is given by the
following equation:

T (N, P ) ≈ 1
P
·O(N3) + O(N2) (8)

P-T and NP-T models were constructed and evaluated without log P term, and the derived average
errors were 43% with the P-T model and 19% with the NP-T model. The average error of P-T slightly
increased from 34%, whereas the average error of NP-T was successfully improved from 33% to 19%.
Though this is an application-specific adjustment, it is worth considering excluding negligible terms to
check whether the models become more accurate.

5.8. Robust parameter extraction

Although NP-T models were shown to be more robust than other models, they are still sensitive to the
fluctuations and anomalies in measurement results.

Figure 10 displays two NP-T models, both of which are derived from the same set of measurements.
The left model is the NP-T model, whose parameters are extracted (or fitted) by using a standard least
squares method (LS). It is readily seen that this model is wrecked and estimates a negative execution
time for large sizes (e.g., N = 256). This problem was caused by the failure of parameter extraction,
where the coefficient of N3 was fit to a negative value. Once this kind of wrecked model is constructed,
it will be estimated as the optimal configuration, since reasonable models never return negative values
as execution time. Consequently, the quality of estimation is easily degraded to impractical levels.

The simplest way to avoid such failures is to restrict the coefficients to non-negative values in model
parameter extraction. Finding the coefficients ki ≥ 0 by least squares method is known as non-negative
least squares (NNLS) method. The formal definition, algorithm, and example implementation of NNLS
method are found in the reference [31]. NNLS induces nothing but monotonically increasing models,
which assures the estimated execution time is always non-negative. The right graph of Figure 10
displays the NP-T model, whose parameters are extracted by NNLS method.

Here, it should be noted that this condition (ki ≥ 0) is sufficient but over-kill to assure that the
estimated execution time is non-negative. This strong restriction might have a negative impact on the
accuracy of models, because it will reduce the freedom of models significantly. On the other hand,
NNLS is expected to be more robust and resistant to the anomalies and fluctuations in measurement;
this may lead to more accurate estimation. NNLS naturally leaves some of the coefficients to zero
in parameter fitting, which can be interpreted as a generalization of the simplification of estimation
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Figure 10. NP-T models for Himeno benchmark, where the model parameters were extracted by two different
algorithms for the same set of measurement results. Least squares method was used for parameter extraction in

the left graph, while non-negative least squares method was used in the right graph.

equation (Sect. 5.7). This may also improve the accuracy of estimation. The pros and cons of two
algorithms, a standard least squares method (LS) and a non-negative least squares method (NNLS),
must be evaluated experimentally for model parameter extraction.

The behaviors of execution time are heavily dependent on the software environment, even for the
same hardware platform. In the following discussions, Intel C/C++ compiler 9.0 and Intel Fortran
compiler 9.0 were used with MPICH 1.2.7-p1. The differences between LS and NNLS are exhibited
more definitely with this combination of software, since far more anomalies and fluctuations are
observed with them compared to the software used in the previous sections (GCC 3.2.2 and Intel
Fortran 8.1 with MPICH 1.2.6).

Figures 11, 12, 13, and 14 summarize the evaluation results of the models, whose parameters are
extracted by LS and NNLS. As readily seen, the effect of NNLS is outstanding for all four benchmarks.

In case of the Himeno benchmark, the average error ε̄ of the NP-T model whose parameters are
extracted by LS was 487% for the sizes between 32 and 256, while that by NNLS remains as low
as 0.2% (Fig. 11). The large errors of LS are due to wrecked models; for 7 sizes out of 11, negative
execution times were estimated as optimal, which is definitely far from reality. By the way, with the
software of Section 5.1, only small number of wrecked models were derived with LS method. In case
of Fig. 2, negative execution time was not estimated as optimal except for one size.

In case of FEM benchmark, the respective average errors ε̄ between 60 and 600 were 41% for LS
and 2% for NNLS (Fig. 12). For HPL, the respective average errors ε̄ between 1600 and 9600 were
94% for LS and 1% for NNLS (Fig. 13). In both cases, the improvements are drastic.

Meanwhile, in case of FFTE, the average errors ε̄ between 216 and 223 was 194% for LS, while that
of NNLS remained approximately 28% (Fig. 14). The large errors of LS are, yet again, due to wrecked
models; for 5 sizes out of 8, negative execution times were estimated as optimal. This problem is
fixed by using NNLS for parameter extraction. Although the average error with NNLS is not yet quite
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Figure 11. Parameter extraction for NP-T model by least squares method (LS) and non-negative least squares
method (NNLS) for Himeno benchmark. Left graph displays the execution time of actual optimal configuration
(Optimal) and those of estimated optimal configurations with the parameters extracted by LS method and NNLS

method. Right graph displays the corresponding estimation error (ε).
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Figure 12. Parameter extraction for NP-T model by least squares method (LS) and non-negative least squares
method (NNLS) for FEM benchmark. Left graph displays the execution time of actual optimal configuration
(Optimal) and those of estimated optimal configurations with the parameters extracted by LS method and NNLS

method. Right graph displays the corresponding estimation error (ε).
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Figure 13. Parameter extraction for NP-T model by least squares method (LS) and non-negative least squares
method (NNLS) for HPL benchmark. Left graph displays the execution time of actual optimal configuration
(Optimal) and those of estimated optimal configurations with the parameters extracted by LS method and NNLS

method. Right graph displays the corresponding estimation error (ε).
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Figure 14. Parameter extraction for NP-T model by least squares method (LS) and non-negative least squares
method (NNLS) for FFTE benchmark. Left graph displays the execution time of actual optimal configuration
(Optimal) and those of estimated optimal configurations with the parameters extracted by LS method and NNLS

method. Right graph displays the corresponding estimation error (ε).
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satisfactory, 28% is not far from the practical level. As stated in Section 5.4, the FFTE benchmark
spends much time for the all-to-all communication, which is not very precisely modeled in our current
model. Given this fact, the average error of 28% seems not too bad. Though more improvement on this
aspect is desirable, it is left for future studies.

6. Discussion

6.1. Advantages over static process allocation schemes

In this study, we have presented a method to estimate the optimal configuration from all possible
configurations for a given problem size, where the estimation error of our method is reportedly modest
in many cases. Meanwhile, there are simpler alternatives for practitioners; they can use a simple static
allocation scheme, where the process allocation is fixed regardless of problem sizes. The simplest
example of static allocation scheme is to use the whole heterogeneous cluster, invoking one process for
each PE, regardless of the problem size.

Our scheme is conceptually better than a simple static allocation, since it selects the estimated best
configuration for a given size from all possible configurations. However, this single fact is not enough to
convince us that our method is practically superior to static process allocation schemes. The anomalies
and fluctuations in measurements might lead to estimation errors, which may erode the performance
advantage of our scheme. If the performance advantage is not large enough, our scheme might not be
justified given all the efforts required to construct the models for all possible configurations.

Thus, it is necessary to show the quantitative performance advantage of our scheme over simple
static allocation schemes. This section is devoted to this topic.

Figure 15 summarizes the comparison results of various process allocation schemes for the HPL
benchmark. In Figure 15, “Optimal” stands for the results of the actual optimal configurations, and
“NP-T/NNLS” stands for that of the estimated optimal configurations with the NP-T model whose
parameters were extracted with the NNLS method. The numbers in parentheses stand for the results of
static allocation schemes, each of which corresponds to the configuration of (P1,M1, P2,M2, P3,M3).
The left graph plots the execution times, while the right graph plots the estimation error ε of each
configuration. In this figure, four trivial static allocation schemes are examined: a single Pentium 4
node (1, 1, 0, 0, 0, 0), the whole Pentium 4 sub-cluster (4, 1, 0, 0, 0, 0), Pentium 4 and Xeon sub-
clusters (4, 1, 4, 1, 0, 0), and the whole heterogeneous cluster (4, 1, 4, 1, 4, 1).

HPL shows the clear advantage of our scheme. The optimal configurations of HPL were (1, 1, 0, 0,
0, 0) between the size 400 and 1600, (4, 1, 0, 0, 0, 0) between 2400 and 8000, and (4, 1, 4, 1, 0, 0)
for 9600. None of the trivial static allocation schemes gives the optimal execution time for all sizes,
whereas our scheme successfully estimates the optimal or sub-optimal configuration for each size. Size
N = 9600 was the only case in which NP-T/NNLS failed to select the actual optimal configuration (4,
1, 4, 1, 0, 0), where the estimated optimal configuration was (4, 1, 0, 0, 0, 0) and its estimation error
was as small as 3.9%.

NP-T/NNLS displays an excellent score in Himeno benchmark as well. Figure 16 summarizes the
results of the Himeno benchmark for NP-T/NNLS and three static allocations. The Himeno benchmark
is interesting in that the configuration (4, 1, 0, 0, 0, 0) is optimal in most sizes. Using more sub-clusters,
the execution time increases because of the increase of communication time. If a single Pentium 4
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Figure 15. Comparison of various process allocation schemes for HPL benchmark. Left graph displays the
execution time of the actual optimal configuration (Optimal) and those of estimated optimal configurations by

various allocation schemes. Right graph displays the corresponding estimation error (ε).
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Figure 16. Comparison of various process allocation schemes for Himeno benchmark. Left graph displays the
execution time of the actual optimal configuration (Optimal) and those of estimated optimal configurations by

various allocation schemes. Right graph displays the corresponding estimation error (ε).
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Figure 17. Comparison of various process allocation schemes for FEM benchmark. Left graph displays the
execution time of the actual optimal configuration (Optimal) and those of estimated optimal configurations by

various allocation schemes. Right graph displays the corresponding estimation error (ε).

node is used, its execution time becomes much larger than the optimal configuration because of the
low processing power. NP-T/NNLS estimates the optimal configuration in most cases except for size
N = 32, where the optimal configuration was (3, 1, 0, 0, 0, 0).

Figure 17 displays the results of the FEM benchmark, for which the size (N ) must be a multiple
of the total number of processes (P ), as stated in Section 5.2. Thus, the lines between labels were
omitted in this figure, because the size N is discrete. In Figure 17, we plotted the sizes that are the
multiples of 60, to examine three trivial configurations of P = 4, 10, and 12 that satisfy the above
restriction: Pentium 4 sub-cluster (4, 1, 0, 0, 0, 0), 10 fastest nodes (4, 1, 4, 1, 2, 1), and the whole
heterogeneous cluster (4, 1, 4, 1, 4, 1). NP-T/NNLS shows obviously good estimations, whereas three
trivial configurations are far from optimal.

The FEM benchmark is remarkable in that multiprocessing is effective to improve the overall
performance. Figure 18 displays the results of the FEM benchmark, where three simple multiprocessing
configurations for P = 12, 15, and 20 are examined. Though the configuration (4, 2, 4, 1, 3, 1) seems
relatively good in static allocation, it is still inferior to our NP-T/NNLS. The configuration (4, 2, 4, 1,
3, 1) involves large error for small sizes (N = 60, 120), where the Pentium 4 sub-cluster (4, 1, 0, 0, 0,
0) is optimal. The configuration (4, 2, 4, 1, 3, 1) also involves slight errors in N = 240 and 480, both
of which are the multiples of 80. In these cases, the configuration of P = 16, that is (4, 2, 4, 1, 4, 1),
was actually optimal. NP-T/NNLS succeeded in estimating this actual optimal configuration for these
sizes.

Although the configuration (4, 2, 4, 1, 3, 1) is relatively good for the case of the multiples of 60, the
optimal configuration is strongly dependent on the size and no trivial static allocation is expected to be
optimal for various sizes. NP-T/NNLS is particularly advantageous in such cases, since it automatically
estimates the optimal or sub-optimal configuration for various sizes.
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Figure 18. The effect of multiprocessing schemes for FEM benchmark. Left graph displays the execution time
of the actual optimal configuration (Optimal) and those of estimated optimal configurations by various allocation

schemes. Right graph displays the corresponding estimation error (ε).
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Figure 19. Comparison of various process allocation schemes for FFTE benchmark. Left graph displays the
execution time of the actual optimal configuration (Optimal) and those of estimated optimal configurations by

various allocation schemes. Right graph displays the corresponding estimation error (ε).
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Figure 19 displays the results of the FFTE benchmark. As stated in Section 5.4, both the size (N )
and the total number of processes (P ) have to be a power of 2 in this benchmark. Here, three trivial
configurations (P = 1, 8, 16) are summarized in Figure 19; two configurations (2, 1, 0, 0, 0, 0) and (4,
1, 0, 0, 0, 0) were omitted, since their errors (ε) are mostly larger than 1.6.

Although our scheme is not very good at handling FFTE, it rather depends on the tricky behavior of
FFTE. For example, the actual optimal configuration for N = 220, ..., 223 was (8, 1, 0, 0, 8, 1), instead
of (8, 1, 8, 1, 0, 0). The respective actual optimal configurations for N = 216, ..., 219 were (7, 1, 7, 1,
2, 1), (7, 1, 5, 1, 4, 1), (8, 2, 8, 2, 0, 0), and (8, 2, 7, 2, 2, 1), neither of which is trivial. It would be
very difficult to find such configurations optimal, without a detailed timing model of communication.
We expect that precise modeling of communication might lead to more accurate estimations for FFTE.
This point is also left for future studies.

6.2. Estimation of actual execution time

In previous sections, the quality of the estimated optimal configuration was evaluated by the estimation
error ε = (τ̂ − T̂ )/T̂ , where τ̂ is the actual execution time of the estimated optimal configuration, and
T̂ is the actual execution time of the actual optimal configuration. This ε is a measure to evaluate the
quality of the estimated optimal configuration.

Meanwhile, it is equally important to evaluate the accuracy of the estimated execution time.
Although there are as many models as possible configurations, the accuracy of the execution time
of the estimated optimal configuration is of practical importance. Thus, in this section, we examine the
error δ of the estimated execution time, which is defined by δ = (τ − τ̂)/τ̂ . Here, τ is the estimated
execution time of the estimated optimal configuration.

Roughly speaking, it is more difficult to make δ small than to make ε small, since accurate execution
time is not necessary to estimate the optimal configuration. If the order of execution time is kept
accordingly among models, the optimal configuration can be correctly estimated, even if the execution
time itself is not accurate. This is obvious from considering an example, where each model estimates
the execution time as half of its actual execution time. It is still possible to estimate the optimal
configuration correctly with such models, while the estimated optimal execution time (τ ) would always
be half of the actual optimal execution time (τ̂ ). Thus, such models yield the respective errors ε = 0
and δ = −0.5. An actual example of this kind of difficulty was shown with the HPL benchmark by
Kishimoto and Ichikawa [2].

Figure 20 summarizes the error δ of NP-T/NNLS for four benchmarks. It is readily seen that
−0.2 ≤ δ ≤ 0.2 holds in most cases. This error amount looks acceptable for practical applications.
Though there is a tendency for |δ| to be large in small sizes, it is not practically a disadvantage. Since
the execution time is small for small-sized problems, the absolute differences of execution time are
kept accordingly small.

7. Building a predictable cluster

This study presented a method to estimate optimal or sub-optimal configurations for heterogeneous
clusters. Although it is an old idea to estimate execution time based on measurements, it has not been
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Figure 20. The error δ of NP-T/NNLS for four benchmark programs.

fully accepted in the parallel computing community. Below are some examples of the objections often
raised against estimation models including ours.

• Although the results shown here are good, it is a very special case. It may not be applicable to
general cases.

• An actual system is too complex to be represented by a simple model.
• Estimation models can only provide rough estimations. The errors are too large for practical

purposes.
• Exceptional performance anomalies are often observed, but they are difficult to model.
• Even a homogeneous cluster is difficult to predict. A heterogeneous cluster is a much more

difficult target.
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Figure 21. Network transfer rates of Marvell Yukon and Intel Pro/1000GT network interfaces.

Although these objections focus on the quality of models, we would like to point out another aspect
of the problem here. A system must show a simple and predictable behavior to keep the corresponding
model accurate. In other words, we have to build well-behaved clusters. Performance and reliability
issues are often discussed in cluster computing, whereas not enough attention is paid to predictability.
This section emphasizes predictability issues, since it is practically very important to make a cluster
predictable.

The heterogeneous cluster used in this study was built carefully in order to be predictable. Its
components are not special, but they were chosen and coordinated carefully. Under such conditions,
the results shown in Section 5 were derived. Though there are many pitfalls to be avoided in building
a predictable cluster, some applications (e.g., HPL) are well-behaved and resistant to most of these
pitfalls. Thus, the pitfalls shown below did not cause problems in previous studies [1][2] which
examined HPL as an example application.

This section examines some checkpoints that we newly confronted and overcame in the process of
this study. Hopefully, these might help researchers to build a well-behaved and predictable cluster. They
are not specific to heterogeneous clusters, but should be more seriously considered in heterogeneous
clusters which consist of a wide variety of components.

7.1. Network interface

Usually, one or more network interfaces are integrated in recent motherboards. However, it does not
always yield good results to use an on-board network interface for communication. For example, each
Celeron node of our cluster has an on-board Marvell Yukon Gigabit Ethernet interface, whose transfer
rates are summarized in Figure 21 for various communication sizes. The results were derived with the
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Figure 22. Latencies of all-to-all communication among 16 Xeon processors: MTU=1500 and MTU=9000.

TCP version of NetPIPE [32]. As readily seen, the transfer rates of Marvell Yukon fluctuate and are
highly unpredictable. This actually results in unpredictable behavior of application performance.

Therefore, we decided to add an Intel PRO/1000 GT Gigabit Ethernet card for each Celeron node
via PCI bus. The derived transfer rates are also shown in Figure 21. Although a PRO/1000 is slower
than a Yukon for small communication sizes, it is faster for large sizes and behaves well for any size.
By replacing a Yukon with a PRO/1000, the estimation errors were much improved, especially for
communication intensive applications (e.g., FFTE).

It should also be noted that device drivers greatly affect the transfer rates. Although it did not
make any difference in our case, the device driver for network interface should first be updated before
replacing the network interface hardware.

7.2. MTU

Recent Ethernet interfaces and switches can support various MTU (maximum transmission unit) sizes.
Though the default MTU value is around 1500 in many cases, recent hardware often supports a larger
MTU (i.e., jumbo frame). The peak transfer rate might be improved by using a larger MTU, since the
overhead is reduced in communication.

Figure 22 displays the latencies of all-to-all communication for MTU=1500 and 9000. The
communication time obviously becomes longer and more unpredictable in the case of MTU=9000.
Figure 23 summarizes the execution times of FFTE, in which all-to-all communication occupies a
substantial part. It is evident that the FFTE performances of MTU=9000 are actually affected by the
anomalies of all-to-all communication time. Contrary to expectations, a large MTU did not improve
performance in our applications.
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Figure 23. The execution time of FFTE among 16 Xeon processors: MTU=1500 and MTU=9000.
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Figure 24. Two network topologies of a simple heterogeneous cluster.

Optimizing MTU for performance is not an easy task. It is not enough to use the hardware that
supports jumbo frames. Appropriate parameters must also be set for both hardware and software.
Moreover, the best MTU value might depend on the application program. Thus, the default MTU
value (1500) was adopted in this study, since it did not lead to unpredictable behaviors of application
programs. Although we could not be sure this value is best for performance, we could not find a better
one for our cluster.

7.3. Network topology

Needless to say, network topology affects the performance of a parallel program in a cluster. Figure 25
summarizes the latencies of all-to-all communication among 8 Xeons and 8 Celerons for the two
topologies shown in Figure 24. If a single wire-speed switch connects all 16 processors, the latencies
are kept very low. If two switches are used for Xeons and Celerons, the latencies become much larger
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Figure 27. Sensitivity of Himeno benchmark performance to the buffer size of MPI library. Measurements made
with 16 Xeon processors.

and more unpredictable due to the heavy contention on the connection between two switches. As seen
in Figure 26, this difference heavily affects the execution time of FFTE, where all-to-all communication
is a dominant factor.

A heterogeneous network is a challenging target for modeling. Lastovetsky [33] has presented some
interesting results on this subject.

7.4. Library

In this study, MPICH [34] [35] [36] was adopted as the MPI library [37] [38] [39]. Since MPICH is an
open-source library, it can be configured with various buffer sizes. Though the default value is 16 KB,
it does not always yield the best results.

Figure 27 summarizes the performances of the Himeno benchmark for various buffer sizes of
MPICH. Performances are obviously sensitive to the buffer size. It is not surprising to see different
performance curves for various sizes, but it should be noted that performance anomalies are observed
if the buffer size is set to 4 KB, 16 KB, or 64 KB. Such anomalies result in poor estimation quality in
modeling. Therefore, in this study, we compiled MPICH with an 8 KB buffer instead of the default 16
KB.

7.5. Power reduction features

Many recent microprocessors are incorporated with power reduction features, which also affect the
performances of parallel applications. Figure 28 displays the network transfer rate between Pentium
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Figure 28. Network transfer rates between Pentium 4 and Athlon 64 X2 with Cool’n’Quiet feature enabled. Figure
displays the results of 144 trials, which are quite unstable and unpredictable.

4 and Athlon 64 X2 processors.§ Measurement results exhibit highly unpredictable and diverse
behaviors, particularly for large communication sizes. Such behaviors actually affect the performance
of parallel applications.

Such behaviors are caused by Cool’n’Quiet technology of AMD Athlon 64 X2, which dynamically
changes the clock frequency to reduce power consumption and heat dissipation. The transfer rate
becomes unpredictable by Cool’n’Quiet, since the performance of the microprocessor limits the peak
transfer rate. This effect is clearly observed in large communication sizes, where a substantial amount
of work is required of the processor. By disabling Cool’n’Quiet in the BIOS menu, the transfer rate
becomes very stable, predictable, and reproducible.

8. Conclusions

Invoking multiple processes on fast PEs (multiprocessing scheme) is a simple and straightforward
way to alleviate load-imbalance of parallel applications on heterogeneous clusters. Kishimoto
and Ichikawa [1][2] constructed performance models of HPL, and actually estimated sub-optimal
configurations of heterogeneous clusters. The present study offered some improvements of Kishimoto’s
scheme, which were evaluated with four typical scientific applications: CFD (computational fluid
dynamics), FEM (finite element method), HPL (linear algebraic system), and FFT (fast Fourier
transform).

§These results were derived with the TCP version of NetPIPE [32].
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Our experiments showed that our NP-T/NNLS models are superior to Kishimoto’s models, and
practically applicable to four benchmarks; the average errors of NP-T models were 0.2% for the
Himeno benchmark, 2% for the FEM benchmark, 1% for the HPL, and 28% for the FFTE benchmark.
Our study also emphasized the importance of predictability in clusters, listing practical examples
derived from our work.

Our models for execution time estimation are extensively applicable for other optimization purposes.
Though the estimated execution time itself was adopted as an objective function for optimization in
this study, other measures may be adopted instead. An obvious option is to define a cost value for each
node, which might be the CPU charge rate or the power consumption rate of that node. With these cost
values, we can estimate the total cost for the task to find the best configuration to complete the task
at the lowest cost. Another practically useful option is to adopt a heuristic function. For example, it is
possible to select the most cost-effective configuration under the condition that its estimated execution
time is no more than 110% of that of the estimated optimal configuration. This kind of heuristics is
especially useful when the estimated execution time is known to include maximally 10% error; i.e., the
10% difference of the estimated execution time does not matter in such a case.

Though our scheme was originally developed to minimize the execution time, it can be further
utilized for the effective management of computational resources. With our scheme, users can estimate
the optimal subset of PEs, according to the sizes of their own computation. The remaining nodes
generally consist of heterogeneous PEs, which can be utilized for the following computation by
recursively applying our scheme. When a job is finished, the corresponding PEs are returned to the
pool of available PEs for the next job. Thus, the pool of available PEs is inevitably kept heterogeneous.

Our scheme is not designed for resource scheduling as it is. It is the mission of scheduling algorithms
to manage computational resources effectively, while our scheme provides a subordinate function for
scheduling algorithms to estimate the execution time of each configuration. However, all these issues
are beyond the scope of the present study.

More issues to address in future studies include investigations of more applications, refinement of
models for more precise estimations, model construction techniques for more heterogeneous clusters,
modeling of heterogeneous network and topology, and process mapping to PEs considering the network
topology.
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