IEICE TRANS. INF. & SYST., VOL.E101-D, NO.6 JUNE 2018

1521

[PAPER

Evaluation of Register Number Abstraction for Enhanced

Instruction Register Files

Naoki FUJIEDA®, Member, Kiyohiro SATO', Nonmember, Ryodai IWAMOTOY, Student Member,

SUMMARY Instruction set randomization (ISR) is a cost-effective ob-
fuscation technique that modifies or enhances the relationship between in-
structions and machine languages. An Instruction Register File (IRF), a
list of frequently used instructions, can be used for ISR by providing the
way of indirect access to them. This study examines the IRF that integrates
a positional register, which was proposed as a supplementary unit of the
IRF, for the sake of tamper resistance. According to our evaluation, with a
new design for the contents of the positional register, the measure of tam-
per resistance was increased by 8.2% at a maximum, which corresponds
to a 32.2% increase in the size of the IRF. The number of logic elements
increased by the addition of the positional register was 3.5% of its baseline
processor.

key words: computer architecture, embedded systems, instruction register
files, secure processors

1. Introduction

Tamper resistance is a property of software protection
against analysis and falsification. Instruction sequences can
be easily disassembled because an instruction set, or rela-
tionship between an instruction and a machine language, is
usually open to everyone. Malicious codes might be inserted
and executed because the instruction set is usually common
to all individual systems. Hiding some necessary informa-
tion from attackers is one of the approaches to improve tam-
per resistance.

Instruction set randomization (ISR)[1]-[8] is one of
the cost-effective methods to obstruct disassembly and code
injection. It modifies or adds the relationship between an
instruction and a machine language. Hiding the relationship
makes analysis difficult. Diversifying it for each system pre-
vents falsification. ISR is also categorized into lightweight
instruction encryption; it can be implemented with a smaller
cost than secure processors that rely on modern ciphers,
such as AEGIS [9] and XOM [10].

An instruction register file (IRF) [3], [11], a small table
that supplies frequently executed instructions, can be used as
a means of ISR. It is placed after an instruction fetch stage
of a processor and the instructions listed in the IRF can be
accessed by shorter indices. Although it was originally pro-
posed to reduce the instruction fetch energy by compressing

Manuscript received July 11, 2017.
Manuscript revised December 27, 2017.
Manuscript publicized March 14, 2018.

"The authors are with Department of Electrical and Electronic
Information Engineering, Toyohashi University of Technology,
Toyohashi-shi, 441-8580 Japan.

a) E-mail: fujieda@ee.tut.ac.jp
DOI: 10.1587/transinf.2017EDP7221

and Shuichi ICHIKAWA, Senior Member

instruction sequences using indices, it also hides the con-
tents of the table, or the relationship between an index and
an actual instruction, outside the processor. Our previous
study [3] showed that the number of IRF entries should be
relatively large (e.g. 1024) to balance its hardware cost and
the risk for its contents to be guessed.

In this paper, we focus on a positional register [3], [11],
which keeps register numbers used by recently executed in-
structions. The IRF was proposed with some additional
methods, including the positional register, to supply more
instructions from the IRF by merging multiple instructions
with similar expressions into a single group. The purpose of
this paper is to achieve further improvement of tamper re-
sistance of the large-sized IRF using the positional register.
A new design of the positional register is proposed for an
efficient merge of instructions. The cost of hardware imple-
mentation is evaluated in addition to the tamper resistance.

The rest of this paper is organized as follows. Sec-
tion 2 provides the overview of ISR methods, mainly using
the IRF, and the measure of tamper resistance. Section 3
presents the overview and a translation algorithm of the po-
sitional register. Section 4 describes a hardware implemen-
tation of the positional register, including consideration of
its contents. The proposed design of the positional register
is evaluated in Sect.5 and discussed in Sect. 6. Finally, we
conclude the paper in Sect. 7.

2. Background
2.1 Instruction Set Randomization

Instruction set randomization (ISR) was originally proposed
as a protection from code injection attacks, while it is also
considered as a kind of obfuscation technique for instruc-
tion memory to prevent disassembly. Though some meth-
ods completely rely on software such as emulation and bi-
nary instrumentation [1], [5], [6], [8], some recent methods
introduced hardware support [2], [4], [7], which was more
suitable for embedded systems because of their smaller per-
formance overhead. ISR methods are categorized into two
groups: static and dynamic methods. In static methods, the
executable instructions are converted into randomized forms
before execution. There, since the randomized instructions
are usually accessible, the original instructions or the ran-
domization key should not be guessed by the randomized
instructions. This property is important not only for pre-

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

1522
PC Inst
32 32 32
IRF
g
IMem o
or —> &
ICache 32 =4
9
[
Instruction Instruction Instruction
Fetch 1 Fetch 2 Decode

Fig.1 Organization of Instruction Register Files.

venting disassembly but also for obstructing generation of
malicious codes to be injected.

For static ISR methods, the safety of the ciphers and
the implementation cost are generally in a trade-off and it is
challenging to satisfy both. When a method relies on a sim-
ple substitution cipher [4], [7], robustness against frequency
analysis is important. If a stream cipher [2] or a finite state
machine [6] is used, the internal state of the cipher should
be coherent after a branch instruction is executed. It was
reported that insertion of special instruction to match the in-
ternal state incurs performance loss [2], [6].

Randomness is sometimes utilized by anti-tamper
methods other than ISR. A kind of falsification of running
programs, called code reuse attacks [12], uses fragments of
existing codes in the instruction memory. A typical policy
of its countermeasure is to relocate instruction sequences to
random addresses. ASLR (Address Space Layout Random-
ization) [13] is a coarse-grain method that has been adopted
to most modern operating systems. More recently, ILR (In-
struction Location Randomization) [14] and the Remix sys-
tem [15] have been proposed as finer-grain methods. For
CISC processors (typically x86), random insertion of NOP
instructions may also be useful to prevent abuse of long in-
structions being interpreted from the middle of them [16].
Some of them are orthogonal to ISR methods and their com-
bination with ISR might further improve tamper resistance,
though it is out of the scope of this paper.

2.2 Instruction Register File

Figure 1 illustrates the organization of the Instruction Reg-
ister File (IRF). The IRF is a table of instructions that are
frequently executed. It was originally proposed to reduce
the fetch energy of processors by code compression [11].
In a processor pipeline, it is located between the instruc-
tion fetch stage and the decode stage (shown as Instruction
Fetch 2 in the figure). An IRF-resident instruction is trans-
lated into a special instruction with an index of the IRF at
compile time. If the special instruction is fetched from the
instruction memory, the original instruction is supplied from
the IRF and passed to the decoder, while normal instructions
are directly sent to the decoder.

In our previous study [3], we considered this translation

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

-- o _—
s 1. Profiling . /7 3.Processor Generation

Executables Instruction i1 HDL Source HDL Sources
w/o IRF Profile List of IRF of Processor

EoO»Hs=]
AN

m

{

74
i
i
[
\ J
! 2.Code Generation N/ % £

=03 ®

Executables Soft Processor
w/IRE /. w/ IRF

C Sources

Fig.2 The flow of code and processor generation with the IRF.

of instructions using the IRF as a kind of ISR and utilized it
to improve tamper resistance. This is based on the fact that,
if the list of IRF-resident instructions is hidden from attack-
ers, it is difficult to recover the original instructions from
the special instructions. In other words, the special instruc-
tions can work as a kind of substitution ciphers. Note that
not all instructions are obfuscated by the IRF: only a part
of instructions that are listed in the IRF are translated into
the corresponding special instructions. For example, if an
instruction addiu $v0, $vO, 1 is listed in the 10th entry
of the IRF in one system, it will be translated into a special
instruction such as IRF #10. Since the IRF can be shuffled
for each system, that instruction may be listed in the 20th
entry of the IRF in another system, where it will be trans-
lated into IRF #20. This diversity prevents the attackers to
write malicious codes for each system. The original instruc-
tion sequence is difficult to be obtained without knowing
the contents of the IRF if a large part of the instructions are
translated into such forms.

The IRF alone is not enough to preventing code injec-
tion. Even though the IRF-resident instructions are trans-
lated into special instructions, they can still be executable by
their original forms. This problem can be solved by forcing
IRF-resident instructions to be executed only by the corre-
sponding special instructions. We have proposed a comple-
mentary unit, called IRRF (Instruction Rejection Register
File) to achieve it [17].

In the original proposal of the IRF, the number of en-
tries in the IRF was set to 32 and thus the length of an index
was 5 bits [11]. It showed a good balance between the cov-
erage of instructions by the IRF and the number of instruc-
tions that can be packed into a single special instruction.
There, the IRF was supposed to have different lists of in-
structions according to applications. For tamper resistance,
the balance that should be considered resides between the
hardware cost and the risk for the contents of the IRF to be
guessed. According to our previous study [3], the number
of entries in the IRF should be around 1,024 and its contents
should be shared by all applications.

Figure 2 outlines the flow of the generation of exe-
cutable objects and a soft processor with the IRF, which can
be separated into the following three phases.

FUJIEDA et al.: EVALUATION OF REGISTER NUMBER ABSTRACTION FOR ENHANCED INSTRUCTION REGISTER FILES

1. Profiling. The target applications are once built and ex-
ecuted normally (without the IRF). An instruction pro-
file, or the collection of the frequencies of executed in-
structions, is obtained from their execution traces. The
list of IRF-resident instructions are generated from the
profile by selecting instructions to maximize the mea-
sure of tamper resistance explained in Sect. 2.3.

2. Code Generation. The target applications are built
again. When the actual machine code is generated,
each instruction is checked if it is listed in the IRF. If
listed, it is transformed into a special instruction that
refers to the IRF.

3. Processor Generation. Since this study assumes that
the contents of the IRF is shared by all applications,
the IRF can be embedded in the target processor as a
ROM. The HDL source of the IRF is generated from
the list. By synthesizing it with the HDL sources of
the target processor, the soft processor with the IRF is
obtained. The objects generated for this processor do
not generally work on the other processors whose IRF
are different.

The code generation phase can also be implemented as a
post-processing that modified text sections of executable ob-
jects. Our current implementation adopts a post-processing
method.

2.3 Measure of Tamper Resistance

On hiding the relationship between an index of the IRF and
an instruction, we have proposed a measure of tamper resis-
tance and algorithms to select IRF-resident instructions to
maximize the measure. The IRF should supply as many fre-
quently executed instructions as possible, while frequency
analysis might become easier if there is a bias in the dis-
tribution of occurrence frequency of indices. Our measure
was defined so that both the coverage of the IRF and the flat-
ness of the distribution of its indices were met at the same
time. The sum of the frequency of IRF-resident instructions
executed y(IRF) is calculated from Pp([), the dynamic ex-
ecution frequency of instruction. The flatness of the distri-
bution, E(IRF), is represented by its Shannon entropy, nor-
malized by the theoretical limit, which is calculated from
P (I) the static occurrence frequency of instruction /. The
measure S (IRF) is defined as the product of them. They are
formulated as follows:
N-1
y(IRF) =)" Po(IRF),
i=0
E(RF) = —2i0 Ps (IRF) log ps (IRF)
log N
S (IRF) = y(IRF) x E(IRF),

where IRF, is the ith instruction in the IRF, N is the num-
ber of IRF entries, and pg is calculated from ps(IRF;) =
Ps(IRF,)/ ¥¥,! Ps(IRF;) i.e. the relative occurrence fre-
quency of the index i in the IRF. We showed that E(IRF)

1523

could be significantly improved with a small decrease of
v(IRF), when the most frequent instructions were given
multiple entries of the IRF [3].

3. Use of Positional Register
3.1 Principle of Positional Register

A positional register is a register file that records the num-
bers of the registers that were referenced by recently exe-
cuted instructions [11]. With the positional register, if the
current instruction uses the same register as previous in-
structions, that register can also be specified by the posi-
tional register. An instruction that refers the positional reg-
ister has its indices in the corresponding register fields, in-
stead of register numbers. It also has additional specifier bits
that determine which register fields has been replaced with
indices. Having ‘1’ in a specifier bit means that the corre-
sponding register field has an index of the positional regis-
ter and it must be translated into the actual register number
before execution. Note that this translation can be applied
within a basic block. If there is a branch instruction, recently
executed instructions are no more uniquely determined.

When the positional register is combined with the IRF,
instructions that refer to the positional register are stored
into the IRF with their specifier bits. This means that the
output bit width of the IRF gets longer by the length of the
specifier bits. On execution, when an instruction supplied
from the IRF refers to the positional register, the original
instruction is restored by obtaining the actual register num-
bers from the positional register according to its indices and
specifier bits.

The positional register is useful when there are a group
of instructions of the same kind that differ in the register
number and it can be replaced with the same index of the
positional register. In this case, they can be described as
the same expression on the IRF and thus supplied from a
single entry of the IRF. As a result, it increases the number
of instructions supplied from the IRF without increasing the
number of entries.

Table 1 shows an example of the translation of instruc-
tions with the positional register. The 2nd instruction reads
and writes the register $t0, which is the same as the des-
tination of the 1st instruction. This register number can be
replaced with an index of the positional register, correspond-
ing to the previous destination (shown as dst [0] in the ta-
ble). The 4th and 6th instructions can refer to the previous
destination in the same way. After that, the 2nd, 4th and 6th

Table 1
Line | Original
1 add $t®, $sO, $sl
1w $t0, 0($t0)
add $t1, $s0, $tO
1w $t1, OC$tl)
add $t2, $s0, $t1
1w $t2, 0($t2)

Example of positional register expressions.

Positional

add $t®, $s0, $si

1w dst[0], 0(dst[0])
add $t1, src[1], dst[0]
1w dst[0], 0(dst[0])
add $t2, src[1], dst[0]
1w dst[0], 0(dst[0])

[NNV, IE SNV S]

1524

instructions are now described as the same expression of 1w
dst[0], 0(dst[0]). They can be restored from a single
entry of the IRF, even though their original instructions dif-
fer each other.

3.2 Expected Benefit on Tamper Resistance

The approach of the positional register is also applicable for
improving the measure of tamper resistance. When more
instructions are supplied from the IRF, the dynamic cover-
age of the IRF or y(IRF) is also increased, which potentially
improves S (IRF).

Moreover, it has an advantage from a cryptographic
point of view. In the IRF without the positional register, an
entry of the IRF corresponds to a single instruction. When
the positional register is applied, the corresponding instruc-
tion may differ according to context (or the sequence of re-
cently used registers), like an FSM-based ISR approach [6].
Matching of the internal state of the positional register after
a branch is quite simple: the history of the register numbers
at that point is simply ignored from the subsequent instruc-
tions. It may make analysis of the obfuscated instruction
sequence more difficult, though its effect is not considered
in the calculation of S (IRF).

3.3 Selection of Candidates of Expressions

When an instruction is converted in order to reference the
positional register, there is a choice of expression if a reg-
ister number in that instruction corresponds to multiple in-
dices. Or, it might be the best not to convert it to an index
in the first place. Table 1 also includes an example of such
a choice. In the 3rd instruction, the register $t0 is trans-
lated as the previous destination (dst [0]); however, it also
can be found in the previous source (src[0]) and the des-
tination of the Ist instruction (dst[1]). It has four candi-
dates of expression for this instruction, including the use of
the original register number ($t0). It should be converted
so that more instructions can share the same expression. If
expressions are wrongly selected, contrary to the example
shown in Sect. 3.1, the same original instructions might be
described as different expressions.

In this paper, a greedy algorithm is proposed to se-
lect instruction groups that have frequently appeared expres-
sions. It is because finding the optimal combination of ex-
pressions is a combinatorial optimization problem and can-
not be solved in a practical time. In addition, once a group of
instructions is selected, the other expressions of them should
be excluded from the subsequent selection. This means that
dynamic programming, which is commonly used for combi-
natorial optimization problems, is not suitable for this prob-
lem. The selected expressions are treated as candidates to
be stored in the IRF. They are passed to the selection algo-
rithms of IRF contents proposed in the previous study [3].

Figure 3 describes the pseudocode of the selection al-
gorithm, which calls a subprogram to remove overly rare
expressions to be selected, shown in Fig.4. Note that

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

1: Insts « list of instructions

2: Value < empty associative array

3: for each inst in Insts do

4: inst.exps « all expression of inst

5: inst.rate < Pp(Insts[i]) + Ps(Insts[i])
6: for each exp in inst.exps do

7: if Valuelexp] does not exist then

8: Valuelexp] « 0

9: end if
10: Valuelexp] « Valuelexp] + inst.rate
11: end for
12: end for

13: Candidates <« empty array

14: M « the number of candidates to be selected

15: V,, « lower bound of Value of candidates (if known)
16: RareExps « array of exp such that Value[exp] < V3,
17: foriin [0.M — 1] do

18: if i mod remove_interval = 0 then

19: remove_rare_expressions
20: endif
21: find best_exp that has the maximum Value

22: Candidates < Candidates + best_exp
23 for each inst in Insts do

24: if inst.exps includes best_exp then

25: for each exp in inst.exps do

26: Valuelexp] « Valuelexp] — inst.rate
27: if Valuelexp] < V,, then

28: RareExps « RareExps + exp
29: end if

30: end for

31: clear inst.exps

32: end if

33: end for

34: end for

35: make IRF with Candidates by existing method

Fig.3 Pseudocode for selecting expressions with a positional register.

each instruction, inst, has a supplementary data structure of
inst.exps and inst.rate. The following is an overview of the
algorithm:

1. enumerate all possible expressions with and without
the positional register for each instruction (Line 4),

2. calculate the evaluation value for each instruction (Line
5),

3. calculate the evaluation value for each expression of
instruction by summing up the values of instructions
that have that expression (Lines 6-11),

4. find the expression that has the maximum evaluation
value and add it to the candidates (Lines 21-22),

5. exclude instructions that have the selected expression
from the subsequent selection (Lines 23-33),

6. repeat the steps 3-5 until the number of candidates
reaches the predefined number M (Line 34), and

7. select the contents of the IRF from the obtained candi-
dates using the existing algorithm [3] (Line 35).

In the same way as the selection of candidates in the existing
algorithm [3], the evaluation value of instruction / is calcu-
lated as Pp(I) + Pg(I). The predefined number M is usually
set to N X 5/4, where N is the number of IRF entries. Even
though a larger M is set, the final contents of the IRF will

FUJIEDA et al.: EVALUATION OF REGISTER NUMBER ABSTRACTION FOR ENHANCED INSTRUCTION REGISTER FILES

: remove exp included by RareExps from Value
: for each inst in Insts do
remove exp included by RareExps from inst.exp
end for
: remove inst from Insts such that inst.exp is empty
: clear RareExps

A A

Fig.4 Pseudocode for removing expressions unlikely to be selected
(remove_rare_expressions procedure).

not be changed at all in most cases.

This algorithm may be similar to the original proposal
of the IRF and the positional register [11], though it was not
clearly described in the paper. The difference of our algo-
rithm is that the selected expressions are used as candidates
to be stored in the IRF, rather than directly stored into the
IRF.

The algorithm also adopts an optimization to reduce
the time for selection. If the lower bound of the evalua-
tion value to be selected as a candidate can be estimated
from, for example, the previous execution of the algorithm,
expressions with the evaluation values less than the lower
bound (Vy, in Fig. 3) can be excluded from the subsequent
selection. In the algorithm, such expressions are marked by
the list RareExps (Line 16 and Lines 27-29), and removed
from the selection in a predefined interval (Lines 18-20 and
Fig.4).

The time complexity of the algorithm becomes O(ME),
where E is the number of expressions, because every part
of the main loop, the remove_rare_expressions procedure
(Line 19), finding best_exp (Line 21), and the inner for loop
(Lines 23-33), takes O(E). The remove_rare_expressions
procedure can reduce E toward the end of calculation, while
the procedure itself takes significant amount of time. This is
the reason why the interval (remove_interval in the figure) is
required. According to our evaluation (which will shown in
Sect. 5.2), the interval should be around 64 to minimize the
execution time.

4. Hardware Implementation
4.1 Organization

In the same way as the original IRF proposal [11], our re-
search targets a 32-bit MIPS architecture. Figure 5 describes
the three types of MIPS instructions, R, I, and T, and the cor-
responding register fields. Most of the R-type instructions
have an opcode of zero (some floating-point instructions are
exceptions [18]) and the opcode of J-type instructions is two
or three. The register number can be stored in the rs, rt, and
rd fields, each of which is five bits long. R-type instructions
uses all of them: the rs and rt fields correspond to the source
registers and the rd field corresponds to the destination reg-
ister. I-type instructions uses the rs and rt fields, used as
the source and the destination, respectively. J-type instruc-
tions do not have any field for a register number. Since all
these fields can be replaced by the indices of the positional
register, specifier bits becomes three bits long.

1525

R-Type

[opcode | i [t [HEE
31 26 21 16 11 6 0
I-Type

‘ opcode [rs immediate ‘
31 26 21 16 0
J-Type

‘ opcode] target ‘
31 26 0

Fig.5 Types of MIPS instructions and their register fields.

pPC Inst
—p > =
32 32 35 35 others 32‘ ('Q
IRF g
IMem S,%
or
ICache
b3
—> s>
IN] 35
Instruction Instruction Instruction
Fetch 1 Fetch 2 Decode

Fig.6 IRF with a positional register (PR).

Figure 6 shows the organization of the IRF with the
positional register. If the fetched instruction is a normal in-
struction that does not refer to the IRF, it is passed to the de-
coder without modification by adding zeroes to the specifier
bits. When a special instruction is fetched, the IRF supplies
a 35-bit instruction with specifier bits (spec). The positional
register (PR) is then referenced with the value of the rs, rt,
and rd fields as indices. We describe the definition of in-
dices in Sect.4.2. When the corresponding specifier bit is
‘1, the value of that field is replaced with the output of the
positional register. The original instruction is now restored
and passed to the decoder. After that, the obtained register
numbers are recorded to the positional register in order to
be referenced from subsequent instructions. As we have ex-
plained in Sect. 3.1, the translation of instructions is applied
within a basic block. Though the register numbers beyond
a branch might remain in the positional register, they will
never be recalled.

4.2 Register Fields to be Recorded

Since the positional register records the history of the regis-
ter numbers used by recently executed instructions, it can be
implemented as a set of shift registers. Although the orig-
inal IRF proposal [11] did not showed the detail of the po-
sitional register, it appeared that source and destination reg-
isters were distinguished and all of the referenced registers
were recorded to the positional register.

This is illustrated as Fig.7. The register fields to be
recorded vary with the type of the instruction (R-type or I-
type) as shown by multiplexers. As destinations, the rd or rt
field is recorded for an R-type or I-type instruction, respec-
tively. As sources, both the rs and rt fields are pushed to a

1526

(‘ > R[4]

H
>]]
/RN R[3]
> R[2]
> 5,]
RN R[1]
RI0]
>
/RN
1t IS d 1t
Source ./ \Destination;

Fig.7 The positional register that records all sources and destinations
(PR-Orig).

— R[4]
. c]
—> R[3]
>R C,]
R[2] —> R[2]
b B il
>R Salles
> R[0] 3 R[0]
> > >]
R NG /RN LR
tors rd 1t rd rt
\..Source ; {Destination; \Destination,
PR-SD PR-D

Fig.8 The positional register that records one of sources and a destina-
tion for each instruction (PR-SD) or destinations only (PR-D).

shift register for an R-type instruction, while only the rs field
is pushed for an I-type instruction. Values in the shift reg-
isters are indexed and one of them is selected as an output
value of the positional register. Since there are 32 indices,
the length of each shift register is 16. This type of positional
register is called PR-Orig in this paper.

Figure 8 describes two simplified versions of the posi-
tional register examined in this paper. The PR-Orig type has
complexity in the shift register for sources because the num-
ber of register numbers to be recorded is depending on the
type of the instruction. It can be simplified by recording only
one of the source registers for each instruction or no source
registers at all. In the first version, called PR-SD, we record
only the rt register to the source shift register, based on the
result of a preliminary evaluation. Although the length of
each shift register remains unchanged (16), the source shift
register becomes much simpler. The second version, PR-D,
does not record source registers and it only stores the history
of destinations to a 32-word shift register.

We then propose another type of positional register,
PR-SDPN, that aggressively extracts the similarity of in-
structions. For each instruction, it records a source, the des-
tination, the next number of the destination, and the previous
number of the destination. Figure 9 describes the organiza-
tion of PR-SDPN. It consists of four shift registers, each of
which is eight words long.

An advantage of PR-SDPN is that it can deal with reg-
isters that are not directly referenced by previous instruc-
tions. In other words, it considers the spatial locality of the

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

e e T

P DS

% rr it +4

rtors rd rt rd 1t rd rt
+1 +1 -1-
. Source ;| Destination / , Dest. +1 ;4 Dest.-1

Fig.9 The positional register that records one of sources, a destination,
the destination plus one, and the destination minus one, for each instruction
(PR-SDPN).

register numbers, in addition to the temporal locality. In the
example of Table 1, the destination of the 3rd instruction,
$t1, has not been used by the prior instructions. It cannot
be translated by the positional register that only records the
history of referenced register numbers. However, it can be
interpreted as the next number to the previous destination
($t0) if such abstraction is acceptable. The 5Sth instruction
can be translated in the same way, as its destination ($t2) is
the next to the destination of the 4th instruction ($t1). As a
result, these instructions now have the same expression of,
for example, add dst[0]+1, src[l], dst[0].

5. Evaluation
5.1 Methodology

For the evaluation of the selection algorithm and the
tamper resistance, instruction profiles from the traces of
MiBench [19] are obtained in a similar way to the previous
study [3]. The programs are built for the MIPS32 ISA using
gcc 4.7.3, uClibe 0.9.33.2, and binutils 2.21. In the previous
study, the same instructions appeared in different locations
could be grouped and their appearance frequency could be
summed up. In this study, they must be treated differently
because the translation by the positional register varies with
their prior instructions. As a result, the profiles used in this
study have 375,478 different instructions, while those in the
previous study had 74,589 different (groups of) instructions.
The measure of the tamper resistance is E(IRF), which is the
same as the previous study and explained in Sect.2.2. The
number of IRF entries is set to 1,024. The selection algo-
rithm, shown in Fig. 3, is implemented in Ruby (2.2.2) and
executed on a Core i7 3770 processor with 8 GB of main
memory. The number of candidates is set to 1,280. The
construction of the IRF from the selected candidates (Line
35 of Fig. 3) is excluded from this evaluation.

For the evaluation of the hardware cost, we imple-
mented the IRF and the positional register on Plasma [20],
an open-source MIPS-like soft processor. The measure
of the amount of hardware is the number of slices (logic
blocks), flip-flops, LUTs and BRAMs (Block RAMs). The
maximum operating frequency (Fmax) reported as a place-
and-route result is also used to evaluate the performance

FUJIEDA et al.: EVALUATION OF REGISTER NUMBER ABSTRACTION FOR ENHANCED INSTRUCTION REGISTER FILES

Table 2 The calculation time of candidate selection.
#Expressions
Setting Time [s] (initial) | (after removal)
PR-Orig 121.49 1,082,425 33,945
PR-D 82.99 713,773 23,944
PR-SD 118.69 1,032,405 34,274
PR-SDPN 126.96 994,471 34,269

overhead. Also, the executed instructions per cycle (IPC)
is collected by running the Dhrystone benchmark. The the-
oretically maximum performance is calculated as the prod-
uct of Fmax and IPC. The circuits are synthesized and im-
plemented with Xilinx ISE 14.7, whose strategies are set to
PlanAhead Defaults (XST 14) for synthesis and ParHighEf-
fort (ISE 14) for implementation. It aimed for the fastest
possible circuit by ignoring timing constraints (-x option is
applied). The target FPGA is Spartan-3E XC3S500E, the
default of Plasma.

The IRF with four types of the positional register
shown in Sect. 4.2, PR-Orig, PR-D, PR-SD, and PR-SDPN,
are evaluated. The IRF without the positional register is also
evaluated for reference. A 1024-entry IRF is referred to as
IRF only and a double-sized (2048-entry) IRF is shown as
2x IRF. Note that it is natural for the number of the IRF to
be set to a power of two because the IRF is referenced by in-
dices. In the hardware cost evaluation, the baseline Plasma
(without the IRF) is implemented, which is referred to as
Baseline.

5.2 Results of Selection Algorithm

Table 2 shows the calculation time of selecting candidates
of expressions, along with the total number of unique ex-
pressions, for each setting of the positional register. The
parameters Vy, and remove_interval were set to 2 x 107 and
64, respectively. In respect of the number of expressions,
the number after performing remove_rare_expressions pro-
cedure for the first time (after removal) is put down with
the initial number. The calculation time was strongly corre-
lated with the number of expressions, yet it was not pro-
portional. Most of expressions are not likely to be se-
lected as candidates and they will be quickly removed by
the remove_rare_expressions procedure. The numbers of
expressions after the first removal were almost equivalent
among the settings except PR-D.

Our prototype implementation selected 1280 candi-
dates of expressions from about one million possible expres-
sions in about two minutes. Though this is much longer than
making the contents of the IRF from the candidate (about a
second as reported in [3]), we think this is acceptable be-
cause the selection of candidates is required only once in
the profiling phase explained in Sect. 2.2.

Figure 10 plots the effect of one of the parameters
remove_interval on the calculation time of selecting candi-
dates. The setting of positional register was PR-SDPN and
V,, was set to 2 x 107*. The decrease of calculation time
by removing expressions unlikely to be selected and the in-

1527

170
165
160
155 o
150
145]

140 (¢]
135 (¢] (%]

130]
%00 o000 00° *
125

Calculation Time [s]

4 8 16 32 64 128 256 512 1024
remove_interval

Fig.10 The effect of remove_interval on the candidate selection of PR-
SDPN.
Table 3 The results of tamper resistance evaluation.
Setting [y(IRF) | E(RF) [S(IRF)

IRFonly | 0.6708 | 0.9167 | 0.6149
PR-Orig 0.7129 | 0.9238 | 0.6586
PR-D 0.7091 | 0.9240 | 0.6543
PR-SD 0.7133 | 0.9241 | 0.6592
PR-SDPN | 0.7185 | 0.9258 | 0.6652
2x IRF 0.7930 | 0.9337 | 0.7404

0.85
0.80
0.75
0.70
0.65

2641 entries
(+29.0 %)

- 1354 entries

Tamper Resistance Measure S(IRF)

0.60 S (+322%)
055 ¢ 4
0.50 & 675 entries
(+31.8 %) > IRF only < PR-SDPN
0.45
512 1024 1536 2048 2560
of Entries

Fig.11 = Tamper resistance measures of various numbers of entries with
and without a positional register.

crease by the procedure itself was balanced when the inter-
val was set to 64 through 128.

5.3 Results of Tamper Resistance

Table 3 summarizes the results of the tamper resistance eval-
uation. The proposed positional register (PR-SDPN) im-
proved the measure of tamper resistance by 8.2%, while the
increase of the measure by the existing design (PR-Orig)
was 7.1%. Although most of the improvement came from
the increase of y(IRF) (7.1%) as we expected in Sect. 3.2, it
also achieved some improvement in the flatness of the distri-
bution of indices (1.0% increase of the entropy). In addition,
it was shown that simplified versions of the positional reg-
ister, especially PR-SD, had little effect on the efficiency of
translation of instructions.

Although the addition of the positional register did not
give better tamper resistance than 2x IRF, we could measure
the number of IRF entries that gave the equivalent tamper
resistance to it. Figure 11 plots the relationship between the
number of IRF entries with and without the positional regis-

1528

ter (PR-SDPN and IRF only, respectively) and the measure
of tamper resistance. A 512-, 1024-, or 2048-entry IRF with
the proposed PR-SDPN achieved the equivalent tamper re-
sistance to a 675-, 1354-, or 264 1-entry IRF without the po-
sitional register. In other words, the addition of PR-SDPN
corresponded to about 30% increase in the size of the IRF.

5.4 Results of FPGA Implementation

Table 4 summarizes the results of FPGA implementations of
the IRF with and without the positional register. Except for
PR-Orig, the increase of the number of slices with the po-
sitional register was up to 77, which corresponded to 3.5%
of the baseline Plasma processor. In particular, the number
of flip-flops (FF) did not increased at all. In Xilinx’s FPGA,
shift registers can be efficiently implemented in some of the
LUTs[21]. Since an LUT can be configured as a 1-bit shift
register of up to 16 bits long, the number of LUTs required
for shift registers in the positional register becomes 30 (PR-
D or PR-SD) or 60 (PR-SDPN). Considering that some other
circuits, mainly multiplexers, are required for the positional
register, the increase of the number of LUTs (118—-163) was
reasonable. PR-Orig considerably increased the amount of
hardware (17.8% of the baseline) because it cannot fit to the
LUT-based shift register.

Doubling the number of entries of the IRF without the
positional register increased only the number of BRAMs. It
was because a 1024-entry IRF was implemented by two 18-
bit 1024-word BRAMs, while a 2048-entry IRF was made
with four 9-bit 2048-word BRAM. All other circuits were
left unmodified. Although the increase of slices and the in-
crease of BRAMs cannot be directly compared, this increase
was generally comparable to PR-SDPN.

It should be noted that increasing the number of the
IRF entries requires BRAMS proportional to it, while the in-
crease of logic units by the positional register is almost con-
stant. The positional register effectively increases the size of
the IRF by about 30% without BRAMs. Its effect becomes
large if the physical number of IRF entries increases. It may
lead to a design guide noting that the IRF should be enlarged
to the extent as to not overuse the BRAMs before applying
the positional register.

As for the maximum operating frequency, the decrease
with the positional register from IRF only was ranged from
9.8% (with PR-D) to 11.4% (with PR-Orig). The IPC was
almost unchanged, though a slight fluctuation was observed,

Table 4 The results of FPGA implementations of the IRF.
Fmax

Setting Slice | FF LUT | BRAM | [MHz] IPC
Baseline 2,177 | 834 | 3,921 5 3643 | 0.465
IRFonly([3] | 2,194 | 822 | 3,972 7 31.98 | 0.464
PR-Orig 2,564 | 982 | 4,570 7 28.32 | 0.464
PR-D 2,255 | 822 | 4,094 7 28.86 | 0.465
PR-SD 2,255 | 822 | 4,098 7 28.71 0.464
PR-SDPN 2,271 | 822 | 4,135 7 28.40 | 0.464
2x IRF 2,194 | 822 | 3,972 9 31.85 | 0.465

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

which was mainly due to the change of the timing of the
memory controller. These results imply that the addition of
the positional register causes 10% decrease of system per-
formance if the processor operates at the maximum possible
frequency and the peripheral devices work at a proportional
frequency to the processor’s. We had already shown that the
critical path of the Plasma processor included the decode
stage [3], [17]. As the recovery of the original instruction
with the positional register is done in the decode stage, it
directly affected the critical path. We will discuss an opti-
mized pipeline design for Plasma in Sect. 6.3.

6. Discussion
6.1 Usage of Positional Register Indices

This section further analyzes the proposed design of the po-
sitional register (PR-SDPN). Figure 12 plots the number of
indices of the positional register that appear in the instruc-
tion list of the IRF. The upper graph shows the plot of PR-
SD, while the lower graph corresponds to PR-SDPN. White,
black and gray bars represent source register numbers, des-
tination register numbers, and neighboring numbers of des-
tination, respectively. The register numbers of the most re-
cently executed instruction have the smallest indices.
According to Fig.12(a), the destination registers
tended to be recalled by the subsequent instructions. This
means that there are true data dependencies between these
instructions, which is a very common situation. This is a
reason that the PR-D simplification works well to some ex-
tent. Figure 12 (a) also indicated that most of the references
of registers are within a four-instruction range. Translation
by the positional register is applied within a basic block.
Some compiler optimization, such as loop unrolling, can

160
40 O Sources

1
120 B Destinations

of times appeared in IRF entries

012345678 0910111213141516171819202122232425262728293031
Index of Positional Register

(a) PR-SD
160
140 O Sources
120 B Destinations
@ Neighbours

of times appeared in IRF entries

012345678 0910111213141516171819202122232425262728293031
Index of Positional Register

(b) PR-SDPN

Fig.12 Distribution of positional register indices in IRF entries.

FUJIEDA et al.: EVALUATION OF REGISTER NUMBER ABSTRACTION FOR ENHANCED INSTRUCTION REGISTER FILES

Table 5 Relative number of instruction fetch with a 32-entry IRF and a
positional register.

Setting | #Fetch [%]
IRF only 62.07
PR-Orig 59.28
PR-D 59.43
PR-SD 59.31
PR-SDPN 58.64
Param-XOR [22] 57.34
2x IRF 56.47

make a long basic block and references to registers of dis-
tant instructions; however, it is relatively infrequent. In our
evaluation, the average length of basic block was 7.83.

From Fig. 12 (b), the previous number of the destina-
tion (indices 3, 7, 11, ...) were more likely to be used than
the next number (2, 6, 10, ...). When closely looking at dis-
assembled program codes, the decrement of the destination
register number is often observed in reading from and writ-
ing to the stack. A mismatch between a register number and
a relative memory address had prevented such instructions
from being grouped. As a result, the sum of the numbers
of indices appeared in the IRF was increased from 668 (PR-
SD) to 734 (PR-SDPN), which leaded more efficient group-
ing of the instructions.

6.2 Applying to Fetch Energy Reduction

As explained in Sects. 2.2 and 3.1, the IRF and the positional
register was originally proposed to reduce the fetch energy
of processors. If the proposed design of the positional reg-
ister is also efficient for a smaller IRF, it may be useful for
the reduction of energy consumption.

We conducted a preliminary evaluation to estimate the
potential of our design for fetch energy reduction. The eval-
uation methodology is almost the same as that shown in
Sect.5.1. Major differences are as follows: the number of
IRF entries is set to 32 (or 64 in 2x IRF); the selection al-
gorithm (Fig.3) is modified to maximize y(IRF); and the
packing of instruction [11] is applied. Since the packing re-
serves 25 bits for indices in a special instruction, the maxi-
mum number of successive instructions to be packed is five
in a 32-entry IRF (5x 5-bit indices) and four in a 64-entry
IRF (4x 6-bit indices).

Table 5 summarizes the number of instruction fetch
with the IRF, relative to that without the IRF. The result
of a parameterization-based approach [22] is also shown as
Param-XOR for reference. The proposed positional register
reduced the number of fetch by 1.1% (0.6 percentage points)
from the original positional register. It proved that the pro-
posed design was useful even for a small IRF. Although it
did not reach the parameterization-based approach, these
approaches can be combined in principle and their combi-
nation can further reduce the fetch energy.

The number of instruction fetch can be further reduced
by optimization techniques. For example, the limitation of
the positional register about basic blocks can be relaxed by

1529

\ \ /
L L
o || B[|] e,

' ' '

Fig.13 Example of a loop optimization for the positional register.

a loop optimization. Suppose a simple loop that contains a
single basic block, as illustrated in Fig. 13. Since the loop
is entered from multiple locations including the end of the
loop itself, the translation with the positional register cannot
be applied beyond the basic block. If the loop is duplicated
and used separately by the first round and the subsequent
(other) rounds, the subsequent rounds are always entered
from the same instructions and thus the translation inside the
loop is possible. However, such an optimization should be
used under a careful consideration because it will increase
the length of the code and it may affect the efficiency of an
instruction cache. Also, it should be noted that this opti-
mization does not make sense for tamper resistance unless
both of the duplicated codes are hidden by the IRF.

Similarly to tamper resistance, a double-sized (64-
entry) IRF minimized the number of instruction fetch. How-
ever, increasing the size of the IRF is not always the opti-
mal solution in this case. As discussed in the previous stud-
ies[11], [22], the use of a large IRF has a trade-off between
the coverage of instructions and the efficiency of packing
(the maximum number of instructions packed) or the energy
consumption of the IRF itself. A detailed exploration about
the use of the IRF and its supplements for the reduction of
the energy consumption is left for future work.

6.3 Optimization of Pipeline Design

The design of the original Plasma supposes that all registers
and RAMs are synchronized with the positive edges of the
clocks (except the DDR SDRAM controller). Our imple-
mentation of the IRF and the positional register, which was
described in Sect. 4 and evaluated in Sect. 5, follows this de-
sign scheme. However, if we do not follow this supposition,
i.e. the use of the negative edge of the clock for the proces-
sor is permitted, a more balanced pipeline design is possible,
which allows an optimized implementation of the positional
register.

Figure 14 describes the use of a negative edge-triggered
IRF in the pipeline. The reconstruction of the instruction
with the positional register, along with the selection of in-
struction between from the IRF and the instruction memory
or cache, is moved to the latter half of the 2nd instruction
fetch stage. A pipeline register is now required to store the
reconstructed instruction, rather than the fetched instruction.

For the PR-SDPN positional register, we implemented
its variation shown in Fig. 15. In this implementation, in-

1530
PC Inst 35
b > adl » 5
32 32 =)
IRF 7> g
IMem 5
or
ICache
N
L
Instruction Instruction Instruction
Fetch 1 Fetch 2 Decode

Fig.14 Negative edge-triggered IRF with a positional register.

> >
ZROING /RN
rtors rd rt
i Source § Destination

Fig.15 A variation of the PR-SDPN positional register, which records
one of sources, and a destination, and calculates the destination plus and
minus one on read.

Table 6 The results of FPGA implementations of the negative edge-
triggered IRF.

Setting [Slice [FF [LUT | BRAM [Fmax [MHz]
Baseline 2,177 | 834 | 3,921 5 36.43
IRFonly | 2,192 | 842 | 3,919 7 36.76
PR-Orig 2,408 | 998 | 4,207 7 36.10

PR-D 2,218 | 837 | 3,982 7 37.52

PR-SD 2,222 | 837 | 3,987 7 36.09

PR-SDPN | 2,233 | 837 | 4,017 7 35.44

2x IRF 2,193 | 842 | 3,972 9 36.40

stead of recording the register numbers of the destination
plus and minus one in shift registers, they are calculated
from the recorded destination on read. It reduces the num-
ber of shift registers, while it increases the computational
cost of retrieving register numbers.

We implemented and evaluated the implementations
using the negative edge-triggered IRF as the same way as
Sect.5. Table 6 summarizes their results. The maximum
operating frequency of every implementation was quite sim-
ilar to the baseline. It is because the decode stage of the
pipeline, which has the critical path, becomes the same as
that of the baseline. Also, the numbers of slices and LUTs
were reduced from the positive edge-triggered IRF imple-
mentations. As the timing constraints of the circuits around
the IRF and the positional register got relaxed, they were
optimized to reduce area rather than path delay.

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

7. Conclusion

In this paper, we examined the combination of the IRF and
the positional register to improve tamper resistance and pro-
posed a new design of the positional register to achieve more
efficient grouping of instructions. It recorded the next and
the previous numbers of the destination register number for
each instruction, in addition to a source and the destination.
According to our evaluation, 8.2% increase of the measure
of tamper resistance was observed, which was equivalent to
increase the number of IRF entries from 1,024 to 1,354. The
increase of logic elements of our FPGA implementation of
the positional register was modest: 3.5% of the baseline pro-
CEssOr.

Our future work includes an application of the IRF and
the positional register to other processors, especially with
other instruction sets such as x86. It will improve the avail-
ability of the IRF. A detailed exploration about the use of the
proposed design for the reduction of the energy consump-
tion is also left for future work.

Acknowledgments

A part of this work was supported by the Telecommunica-
tions Advancement Foundation and JSPS Grants-in-Aid for
Scientific Research (KAKENHI) Grant Number 16K00072.

References

[1] E.G. Barrantes, D.H. Ackley, S. Forrest, and D. Stefanovi¢, “Ran-
domized instruction set emulation,” ACM Trans. Inf. Syst. Secur.,
vol.8, no.1, pp.3—40, 2005. DOI:10.1145/1053283.1053286.

[2] J.-L. Danger, S. Guilley, and F. Praden, “Hardware-enforced Protec-
tion against Software Reverse-Engineering based on an Instruction
Set Encoding,” Proc. 3rd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, San Diego, CA, pp.5:1-5:11, 2014.
DOI:10.1145/2556464.2556469.

[3] N. Fujieda, T. Tanaka, and S. Ichikawa, “Design and Implemen-
tation of Instruction Indirection for Embedded Software Obfus-
cation,” Microproc. Microsy., vol.45, no.A, pp.115-128, 2016.
DOI:10.1016/j.micpro.2016.04.005.

[4] S. Ichikawa, T. Sawada, and H. Hata, “Diversification of proces-
sors based on redundancy in instruction set,” IEICE Trans. Fundam.,
vol.LE91-A, no.1, pp.211-220, 2008. DOI:10.1093/ietfec/e91-a.1.
211.

[5] G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Countering code-in-
jection attacks with instruction-set randomization,” Proc. 10th ACM
conference on Computer and communications security, Washington,
DC, pp.272-280, 2003. DOI:10.1145/948109.948146.

[6] A. Monden, A. Monsifrot, and C. Thomborson, “Tamper-Resistant
Software System Based on a Finite State Machine,” IEICE Trans.
Fundam., vol.E88-A, no.1, pp.112-122, 2005. DOI:10.1093/ietfec/
e88-a.1.112.

[7]1 A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis,
“ASIST: Architectural Support for Instruction Set Randomiza-
tion,” Proc. 20th ACM Conference on Computer and Communica-
tions Security, Berlin, Germany, pp.981-992, 2013. DOI:10.1145/
2508859.2516670.

[8] G. Portokalidis and A.D. Keromytis, “Fast and practical instruc-
tion-set randomization for commodity systems,” Proc. 26th Annual
Computer Security Applications Conference, Austin, TX, pp.41-48,

http://dx.doi.org/10.1145/1053283.1053286
http://dx.doi.org/10.1145/2556464.2556469
http://dx.doi.org/10.1016/j.micpro.2016.04.005
http://dx.doi.org/10.1093/ietfec/e91-a.1.211
http://dx.doi.org/10.1145/948109.948146
http://dx.doi.org/10.1093/ietfec/e88-a.1.112
http://dx.doi.org/10.1145/2508859.2516670
http://dx.doi.org/10.1145/1920261.1920268

FUJIEDA et al.: EVALUATION OF REGISTER NUMBER ABSTRACTION FOR ENHANCED INSTRUCTION REGISTER FILES

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

2010. DOI:10.1145/1920261.1920268.

G.E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas, “AEGIS: architecture for tamper-evident and tamper-re-
sistant processing,” Proc. 17th annual international conference
on Supercomputing, San Francisco, CA, pp.160-171, 2003.
DOI:10.1145/782814.782838.

D.L.C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resis-
tant software,” Proc. 9th international conference on Architectural
support for programming languages and operating systems, Cam-
bridge, MA, pp.168—177, 2000. DOI:10.1145/378993.379237.

S. Hines, J. Green, G. Tyson, and D. Whalley, “Improving program
efficiency by packing instructions into registers,” Proc. 32nd annual
international symposium on Computer Architecture, Madison, WI,
pp-260-271, 2005. DOI:10.1109/ISCA.2005.32.

H. Shacham, “The Geometry of Innocent Flesh on the Bone: Re-
turn-into-libc without Function Calls,” Proc. 14th ACM Confer-
ence on Computer and Communications Security, Alexandria, VA,
pp.552-561, 2007.

“The PaX Team,”. https://pax.grsecurity.net/, accessed June 20,
2017.

J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J.W. Davidson,
“ILR: Where’d My Gadgets Go?,” Proc. 2012 IEEE Symposium
on Security and Privacy, San Francisco, CA, pp.571-582, 2012.
DOI:10.1109/SP.2012.39.

Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand
Live Randomization,” Proc. 6th ACM Conference on Data and Ap-
plication Security and Privacy, New Orleans, LA, pp.50-61, 2016.
DOI:10.1145/2857705.2857726.

T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brunthaler,
and M. Franz, “Diversifying the Software Stack Using Random-
ized NOP Insertion,” Moving Target Defense II, Advances in
Information Security, vol.100, pp.151-173, 2013. DOI:10.1007/
978-1-4614-5416-8 8.

N. Fujieda, K. Sato, and S. Ichikawa, “A Complement to
Enhanced Instruction Register File against Embedded Soft-
ware Falsification,” Proc. 5th Program Protection and Reverse
Engineering Workshop, Los Angeles, CA, pp.3:1-3:7, 2015.
DOI:10.1145/2843859.2843864.

D. Sweetman, See MIPS Run Linux Second Edition, Morgan Kauf-
mann, Burlington, MA, 2006.

M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” Proc. 2001 IEEE International Work-
shop on Workload Characterization, Austin, TX, pp.3—14, 2001.
DOI:10.1109/WWC.2001.990739.

S. Rhoads, “Plasma — most MIPS I(TM) opcodes,”. http://opencores.
org/project, plasma, accessed June 19, 2017.

K. Chapman, Saving Costs with the SRL16E. White Paper WP271
(v1.0), Xilinx Inc., 2008.

N. Fujieda and S. Ichikawa, “An XOR-based Parameterization
for Instruction Register Files,” IEEJ Trans. Electr. Electron. Eng.,
vol.10, no.5, pp.592-602, 2015. DOI:10.1002/tee.22123.

arh

1531

Naoki Fujieda received his D.E. degree in
2013 from the Department of Computer Science
of Tokyo Institute of Technology. Since 2013,
he is an assistant professor of the Department
of Electrical and Electronic Information Engi-
neering of Toyohashi University of Technology.
His research interests include processor archi-
tecture, applied FPGA systems, embedded sys-
tems, and secure processors. He is a member of
IPSJ, IEICE, and IEEE.

Kiyohiro Sato received his M.E. degree
in 2017 from the Department of Electrical and
Electronic Information Engineering of Toyo-
hashi University of Technology. Since April
2017, he is affiliated with dSPACE Japan K.K.

Ryodai Iwamoto received his B.E. de-
gree in 2017 from the Department of Electri-
cal and Electronic Information Engineering of
Toyohashi University of Technology. Presently,
he is studying for his master’s degree at that in-
stitution.

Shuichi Ichikawa received his D.S. de-
gree in Information Science from the Univer-
sity of Tokyo in 1991. He has been affiliated
with Mitsubishi Electric Corporation (1991—
1994), Nagoya University (1994-1996), Toyo-
hashi University of Technology (1997-2011),
and Numazu College of Technology (2011-
2012). Since 2012, he is a professor of the
Department of Electrical and Electronic Infor-
mation Engineering of Toyohashi University of
Technology. His research interests include par-

allel processing, high-performance computing, custom computing machin-
ery, and information security. He is a member of IEEE, ACM, IEICE, IEEJ,

and IPSJ.

http://dx.doi.org/10.1145/1920261.1920268
http://dx.doi.org/10.1145/782814.782838
http://dx.doi.org/10.1145/378993.379237
http://dx.doi.org/10.1109/ISCA.2005.32
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1109/SP.2012.39
http://dx.doi.org/10.1145/2857705.2857726
http://dx.doi.org/10.1007/978-1-4614-5416-8_8
http://dx.doi.org/10.1145/2843859.2843864
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1002/tee.22123

