
796
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

PAPER Special Issue on Reconfigurable Computing

Data Dependent Circuit for Subgraph Isomorphism

Problem∗

Shuichi ICHIKAWA†, Regular Member and Shoji YAMAMOTO†, Student Member

SUMMARY Although the subgraph isomorphism problem
has various important applications, it is generally NP-complete
and difficult to solve. Though a custom computing circuit can
reduce the execution time substantially, it requires considerable
hardware resources and is inapplicable to large problems. This
paper examines the feasibility of data dependent designs, which
are particularly suitable to a Field Programmable Gate Array
(FPGA). The data dependent approach drastically reduces hard-
ware requirements. For graphs of 32 vertices, the average logic
scale of data dependent circuits is only 5% of the corresponding
data independent circuit. The data dependent circuit is esti-
mated to be maximally 460 times faster than the software. Even
if the circuit generation time is included, a data dependent cir-
cuit is estimated to be 2.04 times faster than software for graphs
of 32 vertices. The performance gain would increase for larger
graphs.
key words: NP-complete, custom circuit, FPGA, graph algo-
rithm

1. Introduction

The subgraph isomorphism problem is a simple decision
problem. Given two graphsGα andGβ , it is determined
whether Gα is isomorphic to any subgraph of Gβ . For
example, see Fig. 1. In this figure, Gβ has a subgraph
that is isomorphic to Gα, whereas Gγ does not.

The subgraph isomorphism problem has many ap-
plications, including scene analysis in computer vision
and search operation in chemical structural formula
databases. However, the subgraph isomorphism prob-
lem is generally NP-complete [6] and computationally
difficult to solve.

For a practical solution, several algorithms have
been proposed. Ullmann [14] proposed a depth-first
search algorithm with a smart pruning procedure (re-
finement procedure), which is now the most popular
and frequently used algorithm for this problem. In his
paper [14], Ullmann also pointed out that his refine-
ment procedure can be implemented with asynchronous
hardware.

A custom circuit for a subgraph isomorphism prob-
lem would be a promising way to solve the problem
quickly. However, the Ullmann’s hardware requires too

Manuscript received August 24, 2002.
†The authors are affiliated with the Department of

Knowledge-based Information Engineering, Toyohashi Uni-
versity of Technology, Aichi-ken, 441–8580 Japan.

∗This work appeared in outline form as an extended ab-
stract in the Proceedings of FPL2002, pp.1068–1071, LNCS
2438, Springer (2002).

Fig. 1 Subgraph isomorphism.

many resources for practical applications. The purpose
of this study is to examine the data dependent designs
of Ullmann’s hardware, which drastically reduces the
hardware resources.

If any input of the logic circuit turns out to be con-
stant, the circuit can be reduced. In the same manner,
we can shrink the logic scale of Ullmann’s circuit by
fixing the input graph instance. The obvious drawback
of this approach is that the circuit is not reusable. It
would be impractical to implement such data depen-
dent circuits in usual ASIC technologies. Instead, a
reconfigurable device technology (e.g., FPGA) is essen-
tial to our approach.

2. Custom Circuit for Subgraph Isomorphism
Problems

Custom computing circuitry is a sensible choice for a
cost-effective acceleration of solutions to subgraph iso-
morphism problems. This section briefly outlines some
preceding studies and their problems. More references
to related works are found in our earlier papers [9], [10].

2.1 Ullmann Circuit

As described in Sect. 1, Ullmann’s refinement procedure
can be implemented with a logic circuit [14]. Let us
consider the Ullmann circuit in more detail.

Let pα and pβ be the number of vertices of graph
Gα and Gβ , respectively. The matrices A and B are
the adjacency matrices of Gα and Gβ . An adjacency
matrix is one of the data structures used to represent
graphs [7]. The matrix M is used for temporary vari-
ables in the refinement procedure.

A = [aij ] (1 ≤ i, j ≤ pα), (1)
B = [bij ] (1 ≤ i, j ≤ pβ), (2)
M = [mij ] (1 ≤ i ≤ pα, 1 ≤ j ≤ pβ). (3)

Please note that all these matrices are implemented by



ICHIKAWA and YAMAMOTO: DATA DEPENDENT CIRCUIT FOR SUBGRAPH ISOMORPHISM PROBLEM
797

Fig. 2 Element circuit for refinement procedure.

memory modules or flipflops.
Figure 2 illustrates the element circuit to calcu-

late mij , as proposed by Ullmann [14]. The whole cir-
cuit for the refinement procedure includes a pα × pβ

array of this element circuit. Sharing the common sub-
circuits rkj (1 ≤ k ≤ pα) among mij (1 ≤ i ≤ pα),
the total hardware resource for the refinement proce-
dure is reduced to O(pα pβ

2), which is still very large.
The Ullmann circuit also requires memories and se-
quencers, but they are negligible compared to the re-
sources needed for the refinement procedure.

Experimental evaluations with a Field Pro-
grammable Gate Array (FPGA) revealed that the origi-
nal Ullmann circuit requires too many logic gates, most
of which are used for the refinement procedure. As far
as hardware is concerned, we must drastically reduce
the number of logic gates [9].

2.2 Partially Sequential Ullmann Circuit

Ichikawa et al. [9] examined the modified Ullmann de-
signs that adopt partially sequential implementations of
the refinement procedure circuitry to reduce the logic
scale. Although some of the designs proved to be more
cost-effective than the Ullmann’s original circuit, they
are still expensive.

2.3 Konishi Circuit

Ichikawa et al. [10] proposed a new algorithm that
adopts a pruning condition simpler than that of Ull-
mann’s refinement procedure. Called “Konishi’s algo-
rithm” after its inventor, it requires much less hard-
ware because its pruning procedure is so much simpler
than Ullmann’s. Though this algorithm exhibits per-
formance inferior to Ullmann’s algorithm because of its
reduced pruning ability, it is still far more cost-effective
than either the original Ullmann or the partially se-
quential Ullmann circuits [9].

The hardware accelerator of Konishi’s algorithm
was implemented and evaluated on a FPGA board [10],
[11]. As this circuit is very small, two equivalent units
could fit into a single Lucent 2C15A FPGA, which out-
performed the software implementation on an off-the-
shelf microprocessor.

2.4 Data Dependent Ullmann Circuit

To solve larger problems by custom circuitry, both logic
scale and matching efficiency are important. It is de-
sirable, if possible, to reduce the hardware requirement
of the Ullmann’s algorithm. This paper examines data
dependent implementations of the Ullmann circuit that
drastically reduces the number of logic gates.

Generally, if any input of the logic circuit turns
out to be constant, the circuit can be reduced. This
reduction can be applied recursively. Therefore, a data
dependent circuit can be smaller than a data indepen-
dent circuit with the same function. Smaller circuits
usually work at a higher frequency, and thus can be
faster. A data dependent circuit is more cost-effective,
because it is smaller and faster†.

A data dependent design is well suited to FPGA
implementation due to its nature. On the other hand,
the evident drawback is that the circuit is not reusable.
Since a custom circuit must be generated for each input
instance, the processing time for logic synthesis, map-
ping, placement and routing is also important along
with the execution time itself.

For computationally difficult problems such as sub-
graph isomorphism problems, the execution time for
larger problems increases very quickly. As we will show
later, the circuit generation time could be inferior or
even negligible compared to the execution time. This is
one of the reasons why the authors chose a data depen-
dent approach to computationally difficult problems.

3. Data Dependent Circuit for Graph Prob-
lems

Although there have been no studies on the data depen-
dent approach to solving subgraph isomorphism prob-
lems, some other graph problems were examined in
prior studies. This section briefly describes these stud-
ies.

Chakradhar and Agrawal [3] showed the feasibil-
ity of a VLSI solution to an Independent Set Problem
(ISP). Their approach is based on the transformation of
the graph to a logic circuit. Their study is relevant here
because (1) ISP is an NP-complete problem, and (2)
their VLSI solution is data dependent. However, their
approach is not general but limited to special cases.
In addition, neither implementation nor evaluation was
discussed.

Babb, Frank and Agarwal [1] introduced Dynamic
Computation Structures (DCS) to solve closed semi-
ring problems (e.g., Transitive Closure, Shortest Path).
They mapped graph instances to DCS on FPGA in a

†This kind of technique is not limited to hardware. In
the software area, it is well known as software specialization
or partial evaluation [4].



798
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

straightforward manner, thus implementing a data de-
pendent circuit for solving graph problems. However,
their target applications were so simple that they are
solvable in polynomial time. It is not realistic to build
custom circuits for such simple problems since software
is fast enough to handle them. Another serious draw-
back is that the circuit generation takes several hours.

Dandalis, Mei and Prasanna [5] presented domain-
specific mapping for a simple graph problem (single-
source shortest path). Though a data dependent cus-
tom circuit is powerful and versatile, long circuit gener-
ation time offsets the advantages of custom computing.
They concentrated on reducing circuit generation time,
and their mapping system cut it from 4 hours to 0.1
second. The speed-up ratio to software implementa-
tion was asymptotically 3.75, considering both map-
ping time and hardware execution time. The problem
is that their application is polynomially solvable and
overly simple for custom computing.

Huelsbergen [8] presented a Dynamic Graph Pro-
cessor (DGP) for reconfigurable hardware, in which
graph data structures are represented as logic circuits
on FPGA. DGP is interesting in that vertices and
edges may be dynamically inserted/deleted at low cost.
His target applications were simple and easy to solve;
e.g., reachability, transitive closure, shortest unit path,
connected-component identification, and cycle detec-
tion. The problem with DGP is that it mainly exploits
edge parallelism and does not always fit every problem.

Bingham and Serra [2] presented a data dependent
circuit for Hamiltonian Cycle problem (HC), which is
a well-known NP-complete problem. Their circuit was
shown to be competitive with software implementation,
considering the time for mapping, placement, and rout-
ing. Their design is quite straightforward. They map
vertices to connected finite state machines that emulate
search tree traversal. Their approach is interesting in
that its framework is generally applicable to hard com-
putation problems. On the other hand, their algorithm
seems somewhat naive and unrealistic. Their paper,
for example, presents no pruning technique, which is
always a critical factor in performance. Their evalua-
tion is also not thorough, and no comparison is made
with other techniques.

In the present paper, a data dependent circuit for
a subgraph isomorphism problem is examined. This
problem is NP-complete and requires a long execution
time. For such problems, a custom computing approach
is suited and hopeful. We adopt Ullmann’s algorithm,
which is popular and frequently used in real application
programs.

4. Design Approaches

In this section, a couple of design alternatives are de-
scribed and examined. Quantitative evaluations of
these designs are shown in Sect. 5.

4.1 Original Ullmann Circuit

First of all, the original Ullmann circuit should be eval-
uated as a basis for further evaluation. The source code
is written in VHDL, which was taken from the previ-
ous project [9]. The details of this design are found in
another paper [13]. This design is denoted as “INDEP”
in this paper, because it is independent of input graph
instances.

4.2 Data Dependent Designs

The fundamental advantage of a data dependent ap-
proach is that logic gates can be reduced. See the ex-
amples in Fig. 3. If any input is fixed to a constant, the
logic gate is reduced, and one of the inputs propagates
to the output. This process can be applied recursively.

If the input graph Gα is fixed, the elements aij of
adjacency matrix A become constants. Then, we can
reduce the memory or flipflops to store A and the logic
gates connected to aij in each element circuit (Fig. 2).
Practically speaking, we can simply replace aij in the
VHDL source code with the corresponding constants.
Once any aij is replaced by a constant, unnecessary
logic gates are automatically reduced at the logic syn-
thesis stage. This design approach is denoted by “AL-
PHA” in the following discussion.

In the same manner, “BETA” denotes a design de-
rived by fixing the input graphGβ to a specific instance.
“BOTH0” denotes the circuit that has both Gα and Gβ

fixed.
Please note that the circuit generated by ALPHA

or BETA is reusable to some extent, because one of
the input graphs is still variable. BOTH0 generates
an input-specific circuit, which is much smaller than
ALPHA or BETA, though it is not reusable.

4.3 Improvements on Circuit Generation

It seems both easy and simple to commit logic reduc-
tion to logic synthesis system, since such reduction is an
essential feature of logic synthesis. However, no synthe-
sis tool can answer every need. It is a serious issue that
logic synthesis consumes too much computational re-
source and execution time, in particular for large prob-
lems.

What we need here is a simple and problem-specific
optimization. This could be realized by a simple pre-
processing, which might improve the situations. In this
study, we propose two simple preprocessing techniques.

Fig. 3 Reduction of logic gates.



ICHIKAWA and YAMAMOTO: DATA DEPENDENT CIRCUIT FOR SUBGRAPH ISOMORPHISM PROBLEM
799

Table 1 Evaluation environment.

Item Note

VHDL Source Duron 800MHz, Memory 512 MB, Windows2000 SP2
Code Generation Written in C, compiled with gcc 2.95.3-4 on Cygwin
Synthesis Duron 800MHz, Memory 512 MB, Windows2000 SP2

Synopsys FPGA Compiler II (2000.11 FC3.5.2)
(used with options – Optimize: Area, Effort: High)

Mapping Pentium II 450MHz, Memory 512 MB, WindowsNT 4.0 SP6a
Lucent ORCA Foundry 9.4a (for OR2CxxA architecture)

Software Pentium III 600MHz, Memory 256 MB, Red Hat Linux 6.2
Implementation Written in C, compiled with gcc/egcs-1.1.2-30

Since we already have to generate the VHDL
source code of a data dependent circuit according to
input graphs, it is easy enough to add some reduction
features at this stage. Such preprocessing actually does
no harm because the generated VHDL source code is
optimized again by the logic synthesis tool.

The first thing we need to do is to reduce the AND
and OR gates that are directly connected to aij or
bij . The outputs of the corresponding gates are re-
placed with constants by the VHDL source generator,
as shown in Fig. 3. We added this feature to BOTH0,
creating a new method denoted by “BOTH1” in the
following discussion. BOTH1 does not handle recursive
reduction, which is left for the logic synthesis stage.

We can further reduce gates by exploiting the na-
ture of Ullmann’s algorithm [14]. As you can readily see
in Fig. 2, the value of mij can change only from 1 to
0 during the refinement procedure. Thus, if the initial
value of mij is 0, this mij remains permanently 0. As
the initial values of mij can be easily determined from
the input graph instances (Gα and Gβ), we can thus
reduce the AND and OR gates connected to such mij ,
together with the corresponding element circuit and the
flipflop to store mij . We added this feature to BOTH1,
and denote this improved method as “BOTH2.”

5. Evaluation

This section describes the evaluation results of the de-
sign approaches described in Sect. 4. Each of the results
shown in this section is the average of 50 pairs of Gα

and Gβ , which are randomly generated trees. Trees
were chosen for inputs because they are the sparsest
connected graphs. To reduce simulation parameters,
pα = pβ is also assumed in this study. It would be
interesting to investigate the cases of dense graphs, dis-
connected graphs, and the graphs of pα < pβ. However,
since they are beyond the scope of this feasibility study,
we leave them to future studies.

The evaluation environment is summarized in Ta-
ble 1. First, each input graph pair is processed by a
VHDL source-code generator. At this stage, the reduc-
tion techniques are applied as described in Sect. 4. Sec-
ond, the derived VHDL code is passed to the logic syn-
thesis system to generate a netlist. Then, it is mapped
onto FPGA. We did not perform the placement and

Fig. 4 Logic scale.

routing (P&R) in this feasibility study.
We decided to leave P&R for future studies for the

following reasons. (1) The execution time of P&R is
strongly dependent on implementation constraints such
as required operational frequency and I/O-pin limita-
tions. Since it is difficult to discuss P&R without a loss
of generality, we decided to keep the focus on the gen-
eral feasibility of this approach. (2) P&R is very time
consuming. As described above, we examined 50 graph
sets for each set of parameters. Performing thousands
of P&R trials were simply not feasible.

5.1 Logic Scale

Figure 4 displays the average logic scale derived from
the mapping reports of 50 input graph pairs for each
design approach. The logic scale is measured by the
number of PFUs (programmable function units) of Lu-
cent OR2C FPGA [12].

ALPHA and BETA require almost the same
amount of resources, which is about half of INDEP. The
logic scale of BOTH0 is only 17–12% of that of INDEP
for 16 ≤ pα, pβ ≤ 24. For pα, pβ ≥ 28, the results of
BOTH0 are unavailable since it takes too much time for
the synthesis tool to finish, as shown in Fig. 6. BOTH1
can generate circuits much quicker than BOTH0, while
keeping the quality of the circuit practically equal to
BOTH0. The circuit of BOTH2 is even smaller and
faster than BOTH1. For graphs of 32 vertices, BOTH2
requires only 5% of the resources needed by INDEP.

The reduction in resources is drastic in fully data
dependent designs (BOTH0, BOTH1, BOTH2) com-
pared to partially data dependent designs (ALPHA,



800
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

Table 2 Detailed logic scale of INDEP (PFU).

Number of vertices
16 20 24 28 32

R. P. 2562 5601 9216 15680 24575
Memory 256 502 722 982 1280
Etc. 253 250 272 286 961
Total 3071 6353 10210 16948 26816

Table 3 Detailed logic scale of BOTH2 (PFU).

Number of vertices
16 20 24 28 32

R. P. 45.14 72.68 104.80 143.82 188.34
Memory 91.46 212.32 300.34 405.74 528.14
Etc. 243.84 338.96 422.56 480.00 614.50
Total 380.44 623.96 827.70 1029.56 1330.98

Table 4 Maximum operational frequency (MHz).

Number of vertices
Design 16 20 24 28 32

INDEP 27.8 27.9 n/a n/a n/a
ALPHA 31.9 31.2 n/a n/a n/a
BETA 32.2 32.3 n/a n/a n/a
BOTH0 37.0 35.4 35.3 n/a n/a
BOTH1 37.0 35.4 35.3 31.7 31.7
BOTH2 44.0 39.5 36.7 36.4 35.7

BETA). Therefore, we no longer include ALPHA and
BETA in the following discussion.

Tables 2 and 3 show the details of INDEP and
BOTH2 designs, respectively. In these tables, “R. P.”
stands for the circuit for the refinement procedure. The
item “Memory” refers to the memory resource for ad-
jacency matrices and other temporal storage. All other
circuits are included under “Etc.” As seen in Table 2,
the resource for the refinement procedure is dominant
in the INDEP design, whereas it occupies only 12–14%
of resources in the BOTH2 design. This fact clearly
shows the advantages of BOTH2 over INDEP, particu-
larly for larger graphs.

5.2 Operational Frequency

Average operational frequencies are listed in Table 4.
These results are derived from the reports of technol-
ogy mapping software. The operational frequencies of
INDEP, ALPHA, and BETA for more than 24 vertices
are unavailable because they require so many PFUs
that the mapping software aborts them. The results
of BOTH0 for 28 and 32 vertices are also unavailable,
because the synthesis phase takes too much time to fin-
ish as seen in Fig. 6.

A data dependent approach reduces the depth
of combinatorial logic by removing unnecessary gates.
Thus, a smaller circuit naturally operates at higher fre-
quency as seen in Table 4. One must recall that, while
reducing logic gates, we did not change the sequence
control of the Ullmann circuit. This means that the

Fig. 5 Execution time of subgraph isomorphism detection.

cycle count required to finish the algorithm is identi-
cal to the original INDEP design, i.e., the performance
of circuitry is proportional to its operational frequency.
For example, we can estimate that the BOTH2 design
is about 1.42 times faster than the INDEP design in a
case of 20 vertices.

As the wiring delay is not counted in Table 4, the
real operational frequency after P&R might be much
lower. Nevertheless, a smaller circuit would not lose
its advantages over a larger circuit because the latter
is a much more difficult target for P&R. Taking all of
this into consideration, the performance gain of BOTH2
over INDEP could be greater than the estimation de-
rived from mapping reports.

5.3 Execution Time

As a basis for evaluation, the software implementation
of Ullmann’s algorithm was evaluated by a Pentium
III processor with the same data sets. The execution
environment is detailed in Table 1. The results are
designated as “SOFT” in Fig. 5 and Table 5.

Figure 5 shows the execution times of SOFT, IN-
DEP, and BOTH2. The execution times of INDEP and
BOTH2 were estimated from (1) the operational fre-
quency derived from mapping reports and (2) the cycle
count derived from the cycle-level simulator.

INDEP is not possible for large graphs. Even for
small graphs, INDEP is slightly slower than BOTH2
since it operates at a lower frequency. In contrast,
BOTH2 is feasible even for large graphs, and is much
faster than software.

Table 5 summarizes the acceleration ratio of
BOTH2, that is, the ratio of the execution time of
SOFT to the execution time of BOTH2. As readily
seen, the performance gain grows from 99–460 for 16–
32 vertices. This gain emerges from the parallelism in
the circuit for refinement procedure. Thus, this gain
would increase for graphs with more vertices because
there is a pα pβ parallelism in the refinement procedure
circuit.



ICHIKAWA and YAMAMOTO: DATA DEPENDENT CIRCUIT FOR SUBGRAPH ISOMORPHISM PROBLEM
801

Table 5 Execution time and acceleration ratio.

Number of vertices
Design 16 20 24 28 32

SOFT [sec] 2.532e–01 3.514e–01 8.111e+00 7.903e+02 1.764e+03
BOTH2 [sec] 2.564e–03 1.921e–03 4.033e–02 2.573e+00 3.838e+00
SOFT/BOTH2 98.8 182.9 201.1 307.2 459.6

Fig. 6 Circuit generation time.

Table 6 Detailed generation time of BOTH2 (sec).

Number of vertices
16 20 24 28 32

VHDL Gen. 0.56 0.62 0.67 0.74 0.83
Synthesis 98.28 148.56 211.71 314.38 503.27
Mapping 51.68 114.68 161.60 240.34 357.42
Total 150.52 263.86 373.98 555.46 861.52

5.4 Circuit Generation Time

As a data dependent circuit is generated for each input
graph, the circuit generation time is very important.
Figure 6 displays the advantages of preprocessing.

The circuit generation time of BOTH0 is too large
and increases very quickly for larger graphs. How-
ever, BOTH1 incorporates a simple preprocessing step,
which consequently alleviates the burden of logic syn-
thesis and drastically reduces the time for synthesis.
After all, the circuit generation time of BOTH1 is only
7.9% of BOTH0 for 24 vertices. The preprocessing of
BOTH2 also reduces both the gates and the synthesis
time. BOTH2 only requires 4.9% of the time needed
by BOTH0 for circuit generation (24 vertices).

Table 6 shows the details of the circuit generation
time of BOTH2. The synthesis times and the mapping
times are almost comparable in BOTH2, while the time
for VHDL source-code generation (incl. preprocessing)
is negligible. Considering that the synthesis was a ma-
jor bottleneck in BOTH0, the improvement of BOTH2
in circuit generation time is remarkable. Now that the
synthesis time is not a severe bottleneck in BOTH2, we
would have to focus on how to accelerate mapping (and
P&R) for further improvement.

6. Conclusion

Figure 7 illustrates the total time for SOFT and
BOTH2. Software execution time (SOFT) increases

Fig. 7 Overall time for SOFT and BOTH2.

very quickly; e.g., the time for 32 vertices is 6900 times
longer than for 16 vertices. On the other hand, the to-
tal time of BOTH2 accumulates very slowly; e.g., the
time for 32 vertices is only 5.7 times longer than for
16 vertices. According to our evaluation, BOTH2 is
already 2.04 times faster than SOFT in the case of 32
vertices. The advantage of BOTH2 will be greater for
larger graphs, as shown in Fig. 7.

Though P&R was not performed in this study, we
can show that it does not materially affect our conclu-
sion. The important thing is that the execution time is
not a bottleneck in BOTH2. Let us examine the case of
32 vertices as an example. From Tables 5 and 6, we can
clearly see that the circuit generation time (861.5 sec.)
is far greater than the execution time (3.84 sec.) itself.
Even if the circuit were to operate 10 times slower than
expected, the total time is hardly affected. This means
that we can perform P&R under a very loose constraint,
which consequently keeps P&R time at a modest level.
Even if placement and routing are taken into consider-
ation, the data dependent approach continues to look
promising, especially for large graphs.

Acknowledgments

This work was partially supported by a Grant-in-Aid
for Scientific Research from the Japan Society for
the Promotion of Science (JSPS), as well as grants
from the Telecommunications Advancement Founda-
tion (TAF), the Hori Information Science Promotion
Foundation, and the Okawa Foundation for Information
and Telecommunications. The custom circuits in this
study were designed with Synopsys CAD tools through
the chip fabrication program of VLSI Design and Edu-
cation Center (VDEC), the University of Tokyo.



802
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

References

[1] J. Babb, M. Frank, and A. Agarwal, “Solving graph prob-
lems with dynamic computation structures,” SPIE Photon-
ics East: Reconfigurable Technology for Rapid Product De-
velopment and Computing, pp.225–236, 1996.

[2] J.D. Bingham and M. Serra, “Solving Hamiltonian cycle on
FPGA technology via instance to circuit mappings,” Work-
shop on Engineering Reconfigurable Hardware/Software
Objects, Int’l Conf. Parallel and Distributed Processing
Techniques and Applications (PDPTA2000), CSREA Press,
June 2000.

[3] S.T. Chakradhar and V.D. Agrawal, “A novel VLSI solution
to a difficult graph problem,” Proc. 4th CSI/IEEE Int’l
Symp. VLSI Design, pp.124–129, IEEE Computer Society,
1991.

[4] C. Consel and O. Danvy, “Tutorial notes on partial evalu-
ation,” Proc. 20th ACM Symp. on Principles of Program-
ming Language, pp.493–501, ACM, 1993.

[5] A. Dandalis, A. Mei, and V.K. Prasanna, “Domain spe-
cific mapping for solving graph problems on reconfigurable
devices,” Proc. 6th Reconfigurable Architecture Workshop,
IPPS/SPDP Workshops 1999, pp.652–660, IEEE, 1999.

[6] M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity, Freeman, 1979.

[7] J. Gross and J. Yellen, Graph Theory and Its Applications,
CRC Press, 1998.

[8] L. Huelsbergen, “A representation for dynamic graphs in
reconfigurable hardware and its application to fundamen-
tal graph algorithms,” Proc. ACM/SIGDA Int’l Symp.
Field Programmable Gate Arrays (FPGA2000), pp.105–
115, ACM, 2000.

[9] S. Ichikawa, H. Saito, L. Udorn, and K. Konishi, “Evalua-
tion of accelerator designs for subgraph isomorphism prob-
lem,” Proc. 10th Int’l Conf. Field-Programmable Logic and
Applications (FPL2000), LNCS1896, pp.729–738, Springer,
2000.

[10] S. Ichikawa, L. Udorn, and K. Konishi, “An FPGA-based
implementation of subgraph isomorphism algorithm,” IPSJ
Transactions on High Performance Computing Systems,
vol.41, no.SIG5(HPS1), pp.39–49, 2000.

[11] S. Ichikawa, L. Udorn, and K. Konishi, “Hardware accel-
erator for subgraph isomorphism problems,” Proc. IEEE
Symp. Field Programmable Custom Computing Machines
(FCCM2000), pp.283–284, IEEE Computer Society, 2000.

[12] Lucent Technologies Inc., ORCA OR2CxxA (5.0 V) and
OR2TxxA (3.3 V) Series FPGAs Data Sheet, 1996.

[13] H. Saito, A study on hardware implementation of Ullmann’s
algorithm, Master’s Thesis, Dept. Knowledge-based Infor-
mation Engineering, Toyohashi University of Technology,
2000. .

[14] J.R. Ullmann, “An algorithm for subgraph isomorphism,”
J. ACM, vol.23, no.1, pp.31–42, 1976.

Shuichi Ichikawa received his D.S.
degree in Information Science from the
University of Tokyo in 1991. He has
been affiliated with Mitsubishi Electric
Corporation (1991–1994), Nagoya Univer-
sity (1994–1996), and Toyohashi Univer-
sity of Technology (since 1997). Cur-
rently, he is an associate professor of the
Department of Knowledge-based Informa-
tion Engineering of Toyohashi University
of Technology. His research interests in-

clude parallel and distributed processing, high-performance com-
puting, and custom computing machinery. He is a member of
ACM, IEEE, and IPSJ.

Shoji Yamamoto received his B.E.
degree in 2002 from the Department of
Knowledge-based Information Engineer-
ing of Toyohashi University of Technol-
ogy. Presently, he is studying for his mas-
ter’s degree at that institution.


