1250

IEICE TRANS. INF. & SYST., VOL.E86-D, NO.7 JULY 2003

[PAPER

Trade-Offs in Custom Circuit Designs for Subgraph

Isomorphism Problems****

Shuichi ICHIKAWA', Regular Member, Hidemitsu SAITO'*, Lerdtanaseangtham UDORNT**,

SUMMARY Many application programs can be modeled as
a subgraph isomorphism problem. However, this problem is gen-
erally NP-complete and difficult to compute. A custom com-
puting circuit is a prospective solution for such problems. This
paper examines various accelerator designs for subgraph isomor-
phism problems based on Ullmann’s algorithm and Konishi’s al-
gorithm. These designs are quantitatively evaluated from two
points of view: logic scale and execution time. Our study re-
vealed that Ullmann’s design is faster but larger in logic scale.
Partially sequential versions of Ullmann’s algorithm can be more
cost-effective than Ullmann’s original design. The hardware of
Konishi’s algorithm is smaller in logic scale, operates at a higher
frequency, and is more cost-effective.

key words: NP-complete, graph, algorithm, FPGA

1. Introduction

The subgraph isomorphism problem is a simple deci-
sion problem. Given two graphs, G, and Gg, it is de-
termined whether G, is isomorphic to any subgraph
of Gg. An example of this is shown in Fig.1. In this
figure, Gg has a subgraph that is isomorphic to G,
whereas G, does not.

Many application programs, including scene anal-
ysis and a chemical graph database [10], are modeled as
subgraph isomorphism problems. However, a subgraph
isomorphism problem is generally NP-complete [3] and
difficult to compute in a practical length of time. There
is a strong desire among application developers to
shorten the processing time of subgraph isomorphism
detection.

Many such difficult computation problems are
strongly computation intensive. The amount of data
is small and communication time is negligible in com-
parison to computation time. All these properties seem
preferable for resorting to acceleration by custom com-
puting machinery.

This paper examines various accelerator de-
signs for subgraph isomorphism problems based on

Manuscript received August 27, 2002.
Manuscript revised February 15, 2003.
fThe authors are with the Department of Knowledge-
based Information Engineering, Toyohashi University of
Technology, Toyohashi-shi, 441-8580 Japan.
*Presently, with Toshiba Corp.
**Presently, with Toyota Caelum Inc.
***Presently, with NTT Software Corp.
****This work was partially presented in the Proceedings
of FPL2000, pp.729-738, LNCS 1896, Springer, 2000.

and Kouji KONISHI***, Nonmembers

Ga Gy Gy

Fig.1 Subgraph isomorphism.

Ullmann’s algorithm [11] and Konishi’s algorithm [6].
These designs are quantitatively evaluated from two
points of view: logic scale and execution time. Accord-
ing to our results, Ullmann’s design is faster but larger
in logic scale. Partially sequential versions of Ullmann’s
algorithm can be more cost-effective than his original
design. Konishi’s design is smaller in logic scale, oper-
ates at a higher frequency, and is more cost-effective.

In Sect. 2, the preceding studies on custom hard-
ware for graph algorithms are summarized. Section 3
introduces three algorithms for subgraph isomorphism
problems, i.e., an enumeration algorithm, Ullmann’s al-
gorithm, and Konishi’s algorithm. Section 4 examines
some custom circuit designs of these algorithms. In
Sect. 5, these designs are quantitatively evaluated from
two points of view: “logic scale” and “execution time.”
Section 6 briefly summarizes our results.

2. Related Works

There are few studies on custom hardware for graph iso-
morphism problems, including subgraph isomorphism
problems.

Ullmann [11] introduced an algorithm for subgraph
isomorphism which has been very popular in recent
years. Ullmann showed that the refinement procedure
of his algorithm can be implemented by a parallel hard-
ware for faster execution, but his paper included neither
a detailed discussion nor actual implementations [11].

The graph isomorphism problem can be formu-
lated as a constraint satisfaction problem (CSP). Swain
and Cooper [9] presented a parallel hardware imple-
mentation of constraint satisfaction by arc consistency.
They mentioned graph matching as a possible applica-
tion of their circuitry, though their design is not op-
timized for graph isomorphism. Moreover, no actual
implementation was described in their work.

ICHIKAWA et al.: TRADE-OFFS IN CUSTOM CIRCUIT DESIGNS FOR SUBGRAPH ISOMORPHISM PROBLEMS

There are other studies on the custom comput-
ing engine for CSP. However, some are neither imple-
mented nor evaluated [2],[12]. The DRA chip by Gu [4]
is a VLSI implementation of a discrete relaxation algo-
rithm (DRA), which is implemented by the 3 x NMOS
process. DRA is a general computational technique
and is applicable to subgraph homeomorphism prob-
lems. However, no sufficiently detailed discussion or
evaluation of graph problems is found in Gu’s work.

Ichikawa, Udorn, and Konishi earlier proposed a
new algorithm (Konishi’s algorithm) for subgraph iso-
morphism problems, which is suitable for hardware
implementation [6],[7]. The prototype hardware of
Konishi’s algorithm was implemented and evaluated on
an FPGA (Field Programmable Gate Array), and it
outperformed the software of Ullmann’s algorithm on
an off-the-shelf microprocessor. These works showed
that Ullmann’s original circuit is very large in logic scale
compared to Konishi’s. However, there have been no
further studies of Ullmann’s circuit.

In this paper, several implementations of Ullmann’s
algorithm are first examined in detail. These designs
and that of Konishi are then evaluated and compared
from various viewpoints. The purpose of this paper
is to examine the trade-offs involved in custom circuit
designs for subgraph isomorphism problems in a quan-
titative manner.

3. Subgraph Isomorphism Problem

First, let us define the problem. A graph G is defined
by (V, E), in which V is the set of vertices and F is the
set of edges. A graph G, = (V,, E,) is the subgraph
of another graph Gg = (V3, Eg), if both V,, C V3 and
E, C Eg hold. G, is isomorphic to Gg, if and only if
there is a 1:1 correspondence between V,, and Vg that
preserves adjacency. The subgraph isomorphism prob-
lem is a decision problem to determine whether G, is
isomorphic to a subgraph of Gz. An example of this is
shown in Fig. 1.

3.1 Enumeration Algorithm

As is easily seen, subgraph isomorphism can be deter-
mined by brute-force enumeration with a depth-first
tree-search algorithm. Figure 2 shows an example of
search trees. Assume that V, = {wi,ws, w3} and
Vg = {v1,v2,v3,v4}. At the i-th stage of the search
tree, w; is mapped to a possible vertex in Vg. At each
leaf, an adjacency condition is checked by examining
the correspondence of edges from E, to Eg. If all ad-
jacency relations are preserved at a leaf, a subgraph
isomorphism is found.

3.2 Ullmann’s Algorithm

The naive tree-search algorithm described in the pre-

1251

Voc VB

mapping /’\
Wi amemeees - vy vy Ve,
Wy eV, Vs vy Vi V3 vy
Wi coom VgV, Yy VY, Vs
Fig.2 Search tree.

vious section involves impractical execution time be-
cause of its vast search space. The number of leaves is
ps Poo = 18!/ (P —Pa)!, where po = [V, | and pg = |V
This increases quickly as p, and pg grow. Some proce-
dure is required to prune futile sub-trees, thus shorten-
ing execution time.

The most popular algorithm is the one proposed by
Ullmann, which is a smart tree-search algorithm with
a refinement procedure for pruning[11]. For G, to be
isomorphic to a subgraph of G, adjacent vertices in
G, must be mapped to adjacent vertices in Gg. If this
condition is not satisfied, there is no chance of finding a
subgraph isomorphism. The essence of the refinement
procedure is to check this requirement recursively.

In Ullmann’s algorithm, the refinement procedure
is invoked at every node (including internal nodes).
This involves some overhead at each internal node,
but the performance gain is dramatic, since the uncon-
trolled expansion of the search tree is effectively inhib-
ited. A formal description of this refinement procedure
is found in Ullmann’s paper [11].

Ullmann discussed a parallel hardware implemen-
tation of his refinement procedure [11]. However, that
requires O(paps?) hardware resources which rapidly
increases for larger p, and pg. Our previous study
revealed that only small graphs can be handled with
state-of-the-art FPGA [6]. Hence, an alternate way of
pruning is required for practical implementation.

3.3 Konishi’s Algorithm

The problem with a refinement procedure is that it
checks not only mapped but also as yet unmapped
vertices. This requires enormous resources. Ichikawa,
Udorn, and Konishi [6] proposed a simplified pruning
procedure which only handles mapped vertices. See
Fig.2 again. At the i-th level of the search tree, only
vertices wi,...,w; (1 < i < p,) are mapped. In this
algorithm, we only check the adjacency among these
vertices at the i-th level. For G, to be isomorphic to
a subgraph of G, it is necessary that any subgraph of
G, be isomorphic to a subgraph of Gg. The simplified
pruning procedure examines this necessary condition.
In the following discussion, we denote this algorithm as
Konishi’s algorithm after its inventor. More details of

1252

Konishi’s algorithm are described in the paper [6].

An adjacency check of this algorithm is readily re-
alized by referring to the adjacency matrix of Gg, in-
stead of the expensive refinement procedure. Thus, this
method reduces hardware resources to O(ps?), which is
small enough to fit into state-of-the-art hardware. In
fact, this design was implemented and evaluated on a
Lucent OR2C FPGA chip [6], [7].

4. Implementation Issues

In this section, several design alternatives are described
and examined in detail. The evaluation results of these
designs are shown in Sect. 5.

4.1 Ullmann’s Original Design

Ullmann’s idea [11] is to calculate M = [m;;] (1 <i <
Doy 1 < j < pg) by parallel hardware. The element
circuit that calculates m;; is shown in Fig.3. Here,
A = [ai] (1 < 4,5 < po) is the adjacency matrix of
graph G, and B = [b;;] (1 <4, < pg) is the adjacency
matrix of Gg. The matrix M contains temporary vari-
ables used in the refinement procedure. Let us denote
the element in Fig.3 by sub_comb. The whole circuit
that updates M is implemented by p, x ps matrix of
sub_comb.

As each r;; in Fig.3 consists of O(pg) gates,
O(paps) gates are required for each m;;. The total
hardware resource for p,ps units of sub_comb would
be O(paps?), since ri; (1 < k < p,) can be shared
among m;; (1 < ¢ < p,). Some control circuits are
additionally required for search tree traversal and ter-
mination check, but they are not dominant. We denote
this combinatorial implementation as comb in the fol-
lowing discussion.

4.2 Sequential Implementations of Ullmann’s Circuit
4.2.1 Design Approaches

Although the combinatorial implementation is too
costly, it is possible to reduce the amount of hard-

ware by designing a sequential circuit. In sequential
designs, the subcircuits are time-shared by using input

Pyj aip;

Combinatorial circuit for m;; (sub_comb).

IEICE TRANS. INF. & SYST., VOL.E86-D, NO.7 JULY 2003

multiplexers and sequence controllers. Consequently, a
sequential circuit incurs more processing time than a
combinatorial circuit.

The following are three trivial designs to reduce
the number of sub_comb. Figure 4 illustrates the ideas
behind these partially sequential designs.

seq-i Modify M row by row, using ps units of
sub_comb.

seq_j Modify M column by column, using p, units of
sub_comb.

seq-i-j Modify M element by element, using a single
unit of sub_comb.

Another possible design is to make sub_comb se-
quential. The p,-input AND of sub_comb can be imple-
mented sequentially. This idea is illustrated in Fig. 5.
This circuit is denoted as sub_comb_z in this paper. We
can compose the following sequential implementations
with sub_comb _x.

seq_x Modify all m;; in parallel, using p.pg units of
sub_comb_x.

seq-i.x Modify M row by row, using pg units of
sub_comb_x.

seq_j_x Modify M column by column, using p, units
of sub_comb_x.

seq-i_j-x Modify M one by one, using a single unit of
sub_comb_x.

The design seq_i_j_x is theoretically possible, but it is
overly serialized and too slow for practical use, e.g.,
making it impossible even to finish the simulation of
the benchmark data set in practical time. Therefore,
we disregard seq.i_j_x in the following discussion.

The required orders of combinatorial gates are

sub_comb

\

7
seq_i

V

seq_i_j

N —>

FIED| =

P

seq_j

5
VEIE

Fig.4 Sequential implementations: seq-i, seq-j, seq-ij.
m,\’l
b 1j
m/\pu
Pyj
Fig.5 Sequential circuit for m;; (sub_comb._x).

ICHIKAWA et al.: TRADE-OFFS IN CUSTOM CIRCUIT DESIGNS FOR SUBGRAPH ISOMORPHISM PROBLEMS

Table 1 Memory implementation.
Matrix
Design A] B | M
comb FF FF FF

seq-i RAM FF FF
seq-i_j RAM | RAM | FF
seq-j FF RAM | FF
seq-x RAM FF FF
seq.ix | RAM FF FF
seq.jx | RAM | RAM | FF

summarized in Table 3 in Sect. 5 for each design. You
can see how the hardware requirements decrease in se-
quential implementations.

The order of memory resources is O(pg?) for each
design. It is essential to implement adjacency matrices
(A, B, M), which cost O(pg?). There are additional
memory resources (e.g., for state machines), but they
are negligible.

Even when the required order of memory is the
same, the implementation of memory could be different.
Just consider the adjacency matrix B, which consists of
pg? elements. If all the elements are used at the same
time, this matrix must be implemented by a pg X pg
array of flip-flops. On the other hand, if the circuit
is sequential and uses only pg elements out of ps? at
a time, this matrix can be implemented by a pg x pg
RAM. Generally speaking, RAM is much more dense
and suitable for integration. Table 1 summarizes the
implementations of matrices in each design.

4.2.2 Short Circuit Evaluation

In Ullmann’s algorithm, the refinement procedure fails
if any row of M turns out to be all zeros. This is called
the “FAIL exit” [11], and if such a failure occurs on
any node in the search tree, the subtree under that
node is pruned. This condition is implemented by a
ps-input OR-gate for each row. In Ullmann’s original
design, p, OR-gates are used to detect this condition
simultaneously for all rows.

This brings up another advantage of sequential im-
plementation. For example, consider the case of seq.i
(Fig.4), in which M is updated row by row. If the
fail condition is detected in the first row, we need not
calculate any other rows, but can just terminate the re-
finement procedure and return a “FAIL” to prune the
subtree below this node. This will save many cycles in
sequential execution. This kind of optimization is com-
monly known as “short circuit evaluation of boolean
expression” in the compiler area [1].

Such a short circuit evaluation is also applicable
to other designs. For example, it is effective for seqx.
As you can see in Fig.5, m;; is never turned on but
only turned off by AND-gate in seqx. While m;; is
sequentially updated by increasing x from 1 to p,, some
of the row of the matrix M can become all zeros before

1253

2 comes to po, saving many cycles of returning a FAIL
from the refinement procedure.

It is very simple as well as economical to implement
short circuit evaluations in sequential designs. Thus,
we adopt this mechanism in all sequential designs in
the following discussions. The effect of the short circuit
evaluation is shown in Table 5 of Sect. 5.

4.3 FPGA-Specific Issues

There are technology-specific issues besides the general
issues. Let us take a close look at FPGA technology
here, since we adopt FPGA as the evaluation platform
in the following discussion.

A SRAM-based FPGA device generally consists of
an array of logic elements and wiring resources. Such
a logic element has various names, e.g., PFU (Pro-
grammable Function Unit) in Lucent OR2C FPGA,
LE (Logic Element) in Altera APEX FPGA, and CLB
(Configurable Logic Block) in Xilinx Virtex FPGA.
The functions and structure of PFU, LE, and CLB are
similar to each other. They consist of the LUT (look-up
table)’, FF (flip-flop), tri-state output buffer, and some
control circuits. In the following discussion, we adopt
Lucent OR2C FPGA [8], which is used in the evaluation
of designs.

As discussed in Sect.4.2.1, memory can be imple-
mented either with LUT or with FFs. In the case of
OR2C FPGA, 16 x 4 bits can be implemented by using
LUT in one PFU, while only 4bits are implemented
by using FFs in one PFU. However, the use of FFs
does not necessarily mean the additional use of PFUs
in FPGA. One should keep in mind that each PFU
includes flip-flops. If any combinatorial gates are im-
plemented by LUTSs, there already exist some flip-flops
within such LUTs whether they are necessary or not.
Hence, FFs are often absorbed by the PFUs for combi-
natorial gates, resulting in no additional use of PFUs.
The design itself and the mapping quality determine
how many FFs could be absorbed.

Similar tricks exist for multiplexers, which can be
implemented either with LUTSs or with tri-state buffers
in a SRAM-based FPGA. If multiplexers are imple-
mented with LUTSs, they will consume PFUs. On the
other hand, tri-state buffers are found in every PFUs
but they rarely used. If these idle buffers are utilized,
multiplexers can be implemented at almost no cost.
This trick also reduces the depth of logic, thereby mak-
ing the circuit operational at a higher frequency. In
the following evaluations, we tried to make full use of
tri-state buffers for multiplexers.

4.4 Hardware Implementation of Konishi’s Algorithm

The hardware implementation of Konishi’s algorithm

TLUT is a kind of RAM.

1254

is also examined here as a practical alternative to
Ullmann’s circuit. Since this algorithm had already
been implemented and evaluated on the Lucent OR2C
FPGA in the previous project [6],[7], we simply adopt
this design in the following discussion.

The prototype was implemented on the OPERL
board [5], which is a run-time reconfigurable PCI card
with two Lucent OR2C FPGAs|[8]. One is USER
FPGA (OR2C15A), which contains an application cir-
cuit. USER FPGA is programmed and accessed from
the host computer using PCI bus. Another is PCI
FPGA (OR2C15A), which contains PCI interface cir-
cuitry and a run-time reconfiguration controller for
USER FPGA. We implemented a unit that can handle
up to (pa,pg) = (15,15), which is a good fit with the
basic component of OR2C FPGA (16 x 4bit SRAM).
This unit operates at 16.5 MHz, which is a half of PCI
clock frequency. The unit could have been pipelined for
33 MHz operation to derive twice the performance, but
we chose to keep things simple for this prototype. Even
a single unit of the 16.5 MHz prototype outperformed
the software implementation on a 400 MHz AMD K6-
IIT processor. More details are found in references [6],
[7].

5. Evaluation

Here we present various aspects of designs which in-
clude the original Ullmann’s circuit (comb), the sequen-
tial circuits described in Sect.4.2.1, and the circuit of
Konishi’s algorithm (konishi).

5.1 Logic Scale and Operational Frequency

The order of resources is important because it limits
the scalability. However, the actual resource count on
a certain technology is also important for determining
the constant factor. Even designs that require the same
order of resources can show great differences on an ac-
tual resource count.

To investigate the constant factor, we have to as-
sume a specific technology or implementation. Here,
we adopt Lucent OR2C series FPGA [8] as a measure.
As we already have Konishi’s hardware working on
that device, it is a natural choice. We tuned each de-
sign for OR2C FPGA as much as possible by using a
technology-dependent macro library. Though each im-
plementation is not guaranteed to be best, we believe
our design is not far from the optimal. Moreover, p,
and pg must be fixed to make an implementation. Here,
we designed the circuit for (pa,pg) = (15, 15).

The design environment is summarized in Table 2.
The logic of each design is described in VHDL using
the OR2C macro library. This VHDL code is processed
by a logic synthesis system. Then the derived netlist
is mapped onto OR2C technology to extract the logic
scale and gate delay. In this feasibility study, placement

IEICE TRANS. INF. & SYST., VOL.E86-D, NO.7 JULY 2003

Table 2

Item Environment

Design environment.

Logic Synthesis
Technology Mapping
Target Device

Synopsys Design Compiler
Lucent ORCA Foundry 9.35
Lucent OR2CxxA FPGA

Table 3 Design results.

Logic Scale Freq.
Design Gate Memory | PFU | (MHz)
comb O(paps?®) O(pg?) | 2754 22.5
seq-i O(paps?®) O(pg?) 1770 27.6
seqij | O(paps) O(pg®) | 467 34.2
seq.j O(papg) O(pg?) | 583 27.9
seq-x O(ps®) O(ps?) 671 23.1
seq-ix O(ps?) O(ps?) 529 34.0
seq-j_x O(ps?) O(ps?) 387 34.0
konishi O(ps?) O(ps?) 160 35.9

and routing are not performed. Table 3 summarizes
the PFU count and the operational frequency of each
design. The operational frequency in Table 3 is based
on the estimated gate delay, i.e., the wiring delay is not
counted here.

As seen in Table 3, the PFU count varies consider-
ably according to the design, even when the order of re-
sources is the same. As the largest chip of OR2C FPGA
is an OR2C40A that contains 900 PFU, comb and seq-i
do not fit in a single OR2C FPGA chip. Since the PFU
count is strongly related to cost, we use it as a measure
of implementation costs in the following discussion.

5.2 Execution Time and Area—Time Product

Another important point is performance. Operating
frequency alone is not enough for performance mea-
surement. Even for the same set of input graphs, each
design requires a different number of cycles, because
the sequence control and logic configuration differ in
each design. Therefore, in addition to the estimated
operational frequency, we have to count the number of
cycles using cycle-accurate simulators.

Please note that the cycle count is strongly depen-
dent on each instance of input graphs. Thus, we have
to pay great attention to the nature of the input data
(graphs). Here, we take edge density to represent the
nature of input graphs. Assume a graph with p ver-
tices and ¢ edges. Edge density ed is defined by the
following equation: ed = 2¢/p(p — 1). That is, ed is
the ratio of the number of edges to that of the perfect
graph K. It is trivial that the following relationship
holds: 0 <ed < 1.

In this study, we examine four sets of edge den-
sities (edq,edg) = (0.2,0.2),(0.2,0.4),(0.4,0.2), and
(0.4,0.4). The average of 100 trials on randomly gen-
erated connected graphs is measured for each set of
(edq,edg) using the cycle-accurate simulators of each
design.

Through operational frequency and cycle counts,

ICHIKAWA et al.: TRADE-OFFS IN CUSTOM CIRCUIT DESIGNS FOR SUBGRAPH ISOMORPHISM PROBLEMS

1255

Table 4 Execution time and AT product.

(eda, edg) = (0.2,0.2) (eda,edg) = (0.2,0.4) (eda,edg) = (0.4,0.2) (edq, edg) = (0.4,0.4)
Design | Time [sec.] AT product | Time [sec.] AT product | Time [sec.] AT product | Time [sec.] AT product
comb 1.78e-02 4.89e+-01 1.86e+01 5.14e+-04 5.93e-04 1.63e+00 3.89e-02 1.07e+4-02
seq-i 5.16e-02 9.13e+4-01 5.99e+01 1.06e+05 1.20e-03 2.12e4-00 1.04e-01 1.84e+4-02
seq-i_j 4.73e-01 2.21e+4-02 5.75e+02 2.68e4-05 8.60e-03 4.02e+00 8.88e-01 4.15e+4-02
seq.j 6.36e-02 3.71le+4-01 6.59e+01 3.84e+04 2.11e-03 1.23e+00 1.41e-01 8.23e+4-01
seq-_x 5.83e-02 3.91e+01 6.85e+01 4.59e+04 1.36e-03 9.11e-01 1.16e-01 7.78e+01
seq-i_x 3.68e-01 1.95e+02 5.12e+02 2.71e+05 4.35e-03 2.30e+-00 6.31e-01 3.34e+02
seq-j-x 4.91e-01 1.90e+02 5.85e+02 2.26e+05 9.67e-03 3.74e+00 9.37¢-01 3.62e+02
konishi 3.15e+00 5.04e+02 1.55e+02 2.49e+04 3.47e-02 5.55e+-00 1.57e+4-00 2.51e+02

1000 —T r
F AT=Constant

e x comb
seq_i
seq_i_j
seq_j
seq_x
seq_I_x
seq_j_x
konishi

> e O mOX X+

100 [

X

Total Time [sec]

10 !
100 1000
Area [Number of PFU]

Fig.6 Area vs. time.

the execution time can be estimated. Table 4 summa-
rizes the execution time and Area—Time product of each
design for each (edq, eds) pair. Here, the AT product
is defined as the product of the PFU count and exe-
cution time. Cost is regarded as almost proportional
to the PFU count (area), and performance is defined
by the reciprocal of execution time. Therefore, the AT
product is regarded as a measure of the ratio of cost to
performance.

Figure 6 displays the relationship between the
area and the execution time of each design, where
the total execution time is used for (edq,edg) =
(0.2,0.2),(0.2,0.4),(0.4,0.2), and (0.4,0.4). The
slanted line in the figure is the AT = constant line
that corresponds to Ullmann’s original design (comb).
In Fig. 6, we can see that seq.j, seq_x, and konishi de-
signs are cost-effective solutions to the subgraph iso-
morphism problem.

The resource requirement of comb and seq_i is the
cubic of the number of vertices, while the requirement
for the other designs is quadric. The designs seq-i, seq-j,
and seqx are serialized only one-fold, while seq_i_j,
seq-i_x, and seq_j_x are serialized two-fold. Consider-
ing all these factors, only seq.j and seq—x can be cost-
effective alternatives to comb. In fact, these two are
slightly more cost-effective than comb in Fig. 6. Their
advantages over comb are not so obvious, but could
include the following:

e The use of RAM instead of FF made these designs
denser.

e Simpler logic made the operational frequency
higher.
e Short circuit evaluation saved some cycles in seq_x.

It may seem rather odd that Konishi’s circuit is
also more cost-effective than Ullmann’s original design.
One reason is that Konishi’s circuit is very small and
is a good fit with the OR2C FPGA, which can improve
the AT product. On the other hand, its ineffectiveness
on pruning can make the AT product worse. As seen
in Table 4, it shows an inferior AT product in case of
(edw,edg) = (0.2,0.2), (0.4,0.2), and (0.4,0.4). How-
ever, Konishi’s algorithm works very well in the case
of (edn,edg) = (0.2,0.4), where the average execution
time is far longer than in the other three cases. The re-
sults in Fig. 6 show the sum of all four cases, in which
case (0.2,0.4) dominates the others.

Why does Konishi’s algorithm work so well when
the average execution time is great? Note that sub-
graph isomorphism would very likely be found if ed,, <
edg holds. In such cases, pruning does not work well
even with a refinement procedure because there are
really many isomorphisms in many subtrees. For an
extreme example, assume that G is a perfect graph.
You will find subgraph isomorphisms in every leaf of
the search tree, making pruning impossible. Thus, the
hardware resources invested in pruning would be of no
use at all. If the execution time does not differ much,
Konishi’s circuit will be more cost-effective than Ull-
mann’s because it is much smaller.

The lesson to be learned is that one must choose a
suitable design, taking account of the nature of the ap-
plication and input graphs. In some cases, Konishi’s al-
gorithm would be preferable because it is cost-effective.
If more performance is required, seq_j would be a rea-
sonable selection, although it is more expensive than
konishi. Seq_x also seems good, but the logic scale of
seqx is O(pg?) instead of O(papg) of seq_j. As p, < pg
generally holds, seq-j would scale better than seq_x for
larger graphs.

5.3 Short Circuit Evaluation
Table 5 summarizes the ratio between the savings real-

ized by short circuit evaluation and those of the original
cycles without it. As can readily be seen, the effect is

1256
Table 5 The effect of short circuit evaluation.
(eda, edg)
Design [(0.2,0.2) | (0.4,0.2) | (0.4,0.4)
seq-i 0.17% 1.09% 0.75%
seq-ij 0.17% 1.33% 0.78%
seq-x 0.32% 1.44% 1.19%
seq-i_x 0.22% 1.83% 1.01%

modest and less than 2% of the execution time. We
gave up measuring the case (edq, edg) = (0.2,0.4), be-
cause it takes too long to finish the simulations. In any
event, we could not expect good results in this case. As
the short circuit evaluation only works to make pruning
faster, it would scarcely be effective when pruning itself
does not work well.

6. Conclusion

Though we designed and evaluated the circuits for small
graphs, it is possible to implement custom circuits for
larger graphs by using recent large-scale FPGA chips.
For example, seq.j involves only the O(papg) hardware
resources as shown in Table 3. Quadratic increase of
resources is not too much for recent advances in VLSI
technology. Custom circuits seem promising for large
graphs for which software cannot yield prompt solu-
tions.

As shown in Fig. 6, it is not always cost-effective
to adopt a fully-parallel design. Partially sequential
designs can be more cost-effective. It is also important
to select an adequate design which takes account of the
nature of the input data. An example of this is found
in Table 4.

Acknowledgment

This work was partially supported by a Grant-in-Aid
for Scientific Research from the Japan Society for
the Promotion of Science (JSPS), as well as grants
from the Telecommunications Advancement Founda-
tion (TAF), the Hori Information Science Promotion
Foundation, and the Okawa Foundation for Informa-
tion and Telecommunications. This work was also sup-
ported in The 21st Century COE Program “Intelligent
Human Sensing” from the ministry of Education, Cul-
ture, Sports, Science and Technology. The custom cir-
cuits in this study were designed with Synopsys CAD
tools through the chip fabrication program of VLSI De-
sign and Education Center (VDEC), the University of
Tokyo.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers - Princi-
ples, Techniques, and Tools, ch. 8.4, Addison Wesley, 1987.
[2] C. Cherry and P.K.T. Vaswani, “A new type of com-
puter for problems in propositional logic, with greatly
reduced scanning procedures,” Information and Control,

IEICE TRANS. INF. & SYST., VOL.E86-D, NO.7 JULY 2003

vol.4, pp.155-168, 1961.

[3] M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity, Freeman, 1979.

[4] J. Gu, W. Wang, and T.C. Henderson, “A parallel ar-
chitecture for discrete relaxation algorithm,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-9, no.6, pp.816-831,
Nov. 1987.

[5] S. Ichikawa and T. Shimada, “Reconfigurable PCI card for
personal computing,” Proc. 5th FPGA/PLD Design Con-
ference & Exhibit, Tokyo, pp.269-277, Chugai, 1997. (in
Japanese).

[6] S. Ichikawa, L. Udorn, and K. Konishi, “An FPGA-based
implementation of subgraph isomorphism algorithm,” IPSJ
Transactions on High Performance Computing Systems,
vol.41, no.SIG5(HPS1), pp.39-49, 2000. (in Japanese).

[7] S. Ichikawa, L. Udorn, and K. Konishi, “Hardware accel-

erator for subgraph isomorphism problems,” Proc. IEEE

Symp. Field Programmable Custom Computing Machines

(FCCM2000), pp.283-284, IEEE Computer Society, 2000.

Lucent Technologies Inc., ORCA OR2CxxA (5.0V) and

OR2TxxA (3.3V) Series FPGAs Data Sheet, 1996.

[9] M.J. Swain and P.R. Cooper, “Parallel hardware for con-
straint satisfaction,” Seventh National Conference on Arti-
ficial Intelligence (AAAI’88), pp.2:682-686, Morgan Kauf-
mann, 1988.

[10] N. Trinajsti¢, Chemical Graph Theory (2nd Ed.), CRC
Press, 1992.

[11] J.R. Ullmann, “An algorithm for subgraph isomorphism,”
J. ACM, vol.23, no.1, pp.31-42, 1976.

[12] J.R. Ullmann, R.M. Haralick, and L.G. Shapiro, “Com-
puter architecture for solving consistent labelling prob-
lems,” Computer Journal, vol.28, no.2, pp.105-111, May
1985.

8

Shuichi Ichikawa received his D.S.
degree in Information Science from the
University of Tokyo in 1991. He was for-
merly with the Mitsubishi Electric Cor-
poration (1991-1994) and Nagoya Univer-
sity (1994-1996), and has been with the
Toyohashi University of Technology since
1997. He is currently an associate pro-
fessor in the Department of Knowledge-
based Information Engineering at Toyo-
hashi University of Technology. His re-
search interests include parallel processing, high-performance
computer architecture, microprocessor design, and custom com-
puting machinery. He is a member of the ACM, IEEE, and IPSJ.

Hidemitsu Saito received his B.E.
degree in 1998 and M.E. degree in 2000
from the Department of Knowledge-based
Information Engineering of the Toyohashi
University of Technology. He is presently
with Toshiba Corporation.

ICHIKAWA et al.: TRADE-OFFS IN CUSTOM CIRCUIT DESIGNS FOR SUBGRAPH ISOMORPHISM PROBLEMS
1257

Lerdtanaseangtham Udorn re-
ceived his B.E. degree in 1998 and M.E.
degree in 2000 from the Department of
Knowledge-based Information Engineer-
ing of the Toyohashi University of Tech-
nology. He is presently with Toyota
Caelum, Inc.

Kouji Konishi received his B.E. de-
gree in 1997 and M.E. degree in 1999 from
the Department of Knowledge-based In-
formation Engineering of the Toyohashi
University of Technology. He is presently
with NTT Software Corporation.

