
2038
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

PAPER Special Section on Reconfigurable Systems

The Design and Evaluation of Data-Dependent Hardware for
Subgraph Isomorphism Problem∗

Shoji YAMAMOTO†, Shuichi ICHIKAWA†a), Members, and Hiroshi YAMAMOTO†, Nonmember

SUMMARY Subgraph isomorphism problems have various important
applications, while generally being NP-complete. Though Ullmann and
Konishi proposed the custom circuit designs to accelerate subgraph isomor-
phism problem, they require many hardware resources for large problems.
This study describes the design of data-dependent circuits for subgraph iso-
morphism problem with evaluation results on an actual FPGA platform.
Data-dependent circuits are logic circuits specialized in specific input data.
Such circuits are smaller and faster than the original circuit, although it is
not reusable and involves circuit generation for each input. In the present
study, the circuits were implemented on Xilinx XC2V3000 FPGA, and they
successfully operated at a clock frequency 25 MHz. In the case of graphs
with 16 vertices, the average execution time is about 7.0% of the software
executed on an up-to-date microprocessor (Athlon XP 2600+ of 2.1 GHz
clock). Even if the circuit generation time is included, data-dependent cir-
cuits are about 14.4 times faster than the software (for random graphs with
16 vertices). This performance advantage becomes larger for larger graphs.
Two algorithms (Ullmann’s and Konishi’s) were examined, and the data-
dependent approach was found to be equally effective for both algorithms.
We also examined two types of input graph sets, and found that the data-
dependent approach shows advantage in both cases.
key words: FPGA, custom circuit, graph algorithm, NP-complete, partial
evaluation

1. Introduction

A subgraph isomorphism problem is a simple decision prob-
lem. Given two graphs, Gα and Gβ, it is determined whether
Gα is isomorphic to any subgraph of Gβ. Figure 1 illustrates
an example of this problem. In this figure, Gβ has a sub-
graph that is isomorphic to Gα, whereas Gγ does not. The
subgraph isomorphism problem has many applications; e.g.,
scene analysis in computer vision and search operation in
chemical structural formula databases. However, subgraph
isomorphism problems are generally NP-complete and com-
putationally difficult to solve [7].

It is well known that the custom circuit for a specific
application can accelerate the execution of that application.
The custom circuit for subgraph isomorphism problems was
first suggested by Ullmann in 1976 [13]. In his paper, Ull-
mann proposed an algorithm (Ullmann’s algorithm) that ac-
celerate the solutions to subgraph isomorphism problems
by a smart pruning procedure (refinement procedure). He

Manuscript received December 8, 2003.
Manuscript revised March 5, 2004.
†The authors are affiliated with the Department of Knowledge-

based Information Engineering, Toyohashi University of Technol-
ogy, Toyohashi-shi, 441–8580 Japan.

∗This work partially appeared as an extended abstract in the
Proceedings of FPL2003, pp.1024–1027, LNCS 2778, Springer
(2003).

a) E-mail: ichikawa@tutkie.tut.ac.jp

Fig. 1 Subgraph isomorphism.

pointed out that his refinement procedure can be imple-
mented by parallel hardware. However, Ichikawa et al. [9]
later evaluated Ullmann’s design on FPGA, and reported
that Ullmann’s circuit requires too many resources for prac-
tical use.

Ichikawa, Udorn, and Konishi [10] proposed another
algorithm (Konishi’s algorithm), which adopts a pruning
procedure that is simpler than the refinement procedure.
Konishi’s algorithm can be implemented in smaller logic
scale than Ullmann’s. This means that Konishi’s algorithm
can handle larger problems than Ullmann’s algorithm in the
same logic scale. When the problem size is fixed, two or
more Konishi’s units can be implemented in the area of one
Ullmann’s unit, to solve problems in parallel. Konishi’s cir-
cuit is known to be more cost-effective than Ullmann’s in
some circumstances [9].

Ichikawa and Yamamoto [11] proposed to reduce the
logic scale of Ullmann’s circuit by generating a data-
dependent circuit, which is a logic circuit specialized for
its input data. They reported that the logic scale can be re-
duced to 1/20 of the original in the best case. Though the
data-dependent circuit must be generated for each data, the
total execution time was expected to be shorter than that of
software in large problems, even including the circuit gen-
eration time [11].

The previous work [11], however, still had the follow-
ing problems.

• The results were based on logic synthesis and technol-
ogy mapping. Placement, routing, and implementation
were not accomplished. It is not verified yet that this
approach is actually effective on an FPGA platform.
• Only one algorithm (Ullmann’s algorithm) was exam-

ined. It is not evident that the data-dependent approach
is also advantageous for other algorithms.
• Trees were assumed as input graphs. It is not evident

that the data-dependent approach is advantageous for
general graphs.

Thus, this study aims to examine the following items.

• To measure the logic scale, circuit generation time, and

YAMAMOTO et al.: THE DESIGN AND EVALUATION OF DATA-DEPENDENT HARDWARE
2039

Table 1 Related works.

References Note

Chakradhar, Agrawal [4] VLSI for independent set problem
Babb, Frank, Agarwal [1] Dynamic computation structure for closed semiring problems
Dandalis, Mei, Prasanna [6] Domain specific mapping for graph problems
Huelsbergen [8] Dynamic graph processor
Bingham, Serra [2] Data dependent circuit for Hamiltonian cycle problem
Mencer, Huang, Huelsbergen [12] HAGAR: Multi-context graph processor
Ichikawa, Yamamoto [11] Data dependent circuit for subgraph isomorphism problems

execution time of the data-dependent circuits for sub-
graph isomorphism problems by implementing them
on an actual FPGA platform.
• To implement and evaluate the data-dependent circuits

of another (Konishi’s) algorithm.
• To examine the data-dependent circuits for general in-

put graphs.

There have been few studies on the data-dependent
circuits for graph problems, which are summarized in Ta-
ble 1. However, subgraph isomorphism problems were not
examined except in the authors’ previous study [11] and the
present study.

The rest of this paper is constructed as follows. Sec-
tion 2 introduces Ullmann’s algorithm and Konishi’s algo-
rithm along with their custom circuit designs. Section 3 out-
lines the design issues of data-dependent circuits. Section 4
presents some evaluation results on the Xilinx XC2V FPGA
platform. The last section, Section 5, briefly summarizes
our results.

2. Algorithms for Subgraph Isomorphism Problems

This section briefly describes the algorithms and custom cir-
cuit designs for subgraph isomorphism problems. More de-
tails will be found in the preceding studies [9], [10], [13].

2.1 Subgraph Isomorphism Problem

Assume that a graph G is defined by (V, E), in which V is
the set of vertices and E is the set of edges. A graph Gα =
(Vα, Eα) is the subgraph of another graph Gβ = (Vβ, Eβ), if
both Vα ⊆ Vβ and Eα ⊆ Eβ hold. Gα is isomorphic to Gβ, if
and only if there is a 1:1 correspondence between Vα and Vβ
that preserves adjacency. The subgraph isomorphism prob-
lem is a decision problem to determine whether Gα is iso-
morphic to a subgraph of Gβ. An example of this is shown
in Fig. 1.

Let pα and qα be the number of vertices and edges of
a graph Gα, respectively†. In the same manner, pβ and qβ
stand for the number of vertices and edges of graph Gβ. If
pα > pβ holds, it is evident that Gα is not isomorphic to
any subgraph of Gβ. Therefore, we assume pα ≤ pβ in the
following discussion.

2.2 Enumeration Algorithm

As is easily seen, subgraph isomorphism can be deter-

Fig. 2 Search tree.

mined by brute-force enumeration with a depth-first tree-
search algorithm. Assume that Vα = {u1, u2, u3} and Vβ =
{v1, v2, v3, v4}. At the i-th stage of the search tree, ui is
mapped to a possible vertex in Vβ (Fig. 2).

At each leaf, an adjacency condition is checked by ex-
amining the correspondence of edges from Eα to Eβ. If all
adjacency relations are preserved at a leaf, a subgraph iso-
morphism is found. This check corresponds to determining
the following condition, where the function f is the mapping
function from Vα to Vβ.

∀{ui, u j} ∈ Eα ⇒ { f (ui), f (u j)} ∈ Eβ (1)

This naive tree-search algorithm involves very long ex-
ecution time because of its vast search space. The number of
leaves is pβPpα = pβ!/(pβ − pα)!, which increases quickly as
pα and pβ grow. Some procedure is required to prune futile
sub-trees, thus shortening execution time.

2.3 Ullmann’s Algorithm

Ullmann’s algorithm [13] is very popular for subgraph iso-
morphism problems. Ullmann’s algorithm is a smart tree-
search algorithm with a refinement procedure for pruning.
For Gα to be isomorphic to a subgraph of Gβ, adjacent ver-
tices in Gα must be mapped to adjacent vertices in Gβ. If
this condition is not satisfied, there is no chance of finding a
subgraph isomorphism and the subtree under this node can
be pruned. The essence of the refinement procedure is to
check this requirement recursively.

In Ullmann’s algorithm, the refinement procedure is
invoked at every node (including internal nodes). This in-
volves some overhead at each internal node, but the per-
formance gain is generally dramatic, since the uncontrolled

†We use these notations to follow in Ullmann’s paper [13].

2040
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

Fig. 3 Element circuit for refinement procedure.

expansion of the search tree is effectively inhibited. A for-
mal description of this refinement procedure is found in Ull-
mann’s paper [13].

The requirement of refinement procedure is repre-
sented by the following condition [13].

∀x
1≤x≤pα

(aix = 1)⇒ ∃y
1≤y≤pβ

(mxy · by j = 1)

 (2)

Here, M = [mi j] (1 ≤ i ≤ pα, 1 ≤ j ≤ pβ) is a matrix of
temporary variables. The value of mi j is 1 if it is possible to
map ui ∈ Vα to v j ∈ Vβ; otherwise mi j = 0. A = [ai j] (1 ≤
i, j ≤ pα) and B = [bi j] (1 ≤ i, j ≤ pβ) are the adjacency
matrices of graph Gα and Gβ, respectively. The adjacency
matrix is a data structure to represent a graph. For example,
the element ai j ∈ A is set to 1 if the edge {ui, u j} ∈ Eα exists;
otherwise ai j = 0.

This condition can be implemented by the following
logic equations. The refinement procedure repeatedly cal-
culates the following values at each node of the search tree
until M converges.

rx j = ∃y (mxy · by j) (3)

mi j = mi j · (∀x (aix ∨ rx j)) (4)

Ullmann [13] pointed out that the above logic functions can
be implemented by parallel hardware. His circuit for the re-
finement procedure consists of a pα×pβ array of the element
circuit, which is illustrated in Fig. 3. It is readily seen that
this circuit corresponds to Eq. (3) and (4).

Ullmann’s circuit requires O(pαpβ2) hardware re-
sources which rapidly increase for larger pα and pβ. Our
previous study revealed that only small graphs can be han-
dled with state-of-the-art FPGA [10]. Hence, an alternate
way of pruning is required for practical implementation.

2.4 Konishi’s Algorithm

The problem with a refinement procedure is that it checks
not only mapped but also as yet unmapped vertices, thereby
entailing enormous resources. Ichikawa, Udorn, and Kon-
ishi [10] proposed a simplified pruning procedure which
only handles mapped vertices. For Gα to be isomorphic to a
subgraph of Gβ, it is necessary that any subgraph of Gα be
isomorphic to a subgraph of Gβ. Konishi’s simplified prun-
ing procedure examines this necessary condition.

Let us see Fig. 2 again. At the i-th level of the search

tree, only vertices u1, . . . , ui (1 ≤ i ≤ pα) are mapped. In
Konishi’s algorithm, we only check the adjacency among
these i vertices at the i-th level. To be exact, only the adja-
cency related to ui is examined at the i-th level. As the ver-
tices are mapped incrementally in the search tree, we only
have to check the vertex mapped at the i-th level. More
details of this algorithm are found in our previous report,
in which the adjacency check was implemented by sequen-
tial hardware with the edge list stored in RAM [10]. This
design was chosen to shrink the logic scale, although it
is serialized and slow. Another problem of this design is
that it is not suited for data-dependent approach as that is.
Data-dependent approach has hardly any effects to sequen-
tial circuit, because simple constant propagation only works
in combinatorial circuits†. Thus, we designed a brand-new
implementation of Konishi’s algorithm in the present inves-
tigation.

2.5 A New Design of Konishi’s Algorithm

The adjacency check circuit of Konishi’s algorithm can be
implemented by combinatorial logic gates. This makes the
logic scale larger, while making the execution faster. The
authors examined two designs [15], and adopted the follow-
ing one.

The new adjacency checker calculates the following
necessary condition at each level of a search tree. This nec-
essary condition is very similar to Ullmann’s condition, ex-
cept that di j (1 ≤ i, j ≤ pα) is introduced instead of ai j.

∀x
1≤x≤pα

(dix = 1)⇒ ∃y
1≤y≤pβ

(mxy · by j = 1)

 (5)

Here, di j = ai j if j < i holds; otherwise di j = 0. This is the
mechanism that limits the adjacency check to the vertices
that are already mapped.

The above condition can be implemented by the fol-
lowing equations with temporary variables X = [xi], Y =
[y j], W = [wj], and Z = [z j] (1 ≤ i ≤ pα, 1 ≤ j ≤ pβ).

xi = (di1 · v1) ∨ . . . ∨ (dipα · vpα) (6)

y j = (x1 · m1 j) ∨ . . . ∨ (xpα · mpα j) (7)

wj = (v1 · m1 j) ∨ . . . ∨ (vpα · mpα j) (8)

z j = (b j1 · w1) ∨ . . . ∨ (b jpβ · wpβ) (9)

OK = (y1 ∨ z1) · . . . · (ypβ ∨ zpβ) (10)

In the above equations, V = [vi] (1 ≤ i ≤ pα) represents
the level of search tree, where vi = 1 if i = k and vi = 0 if
i � k at the k-th level of the search tree. The variable OK
represents whether the necessary condition holds or not.

The block diagram of this adjacency checker is shown
in Fig. 4. The blocks D, M1, M2, B, and C correspond to
Eq. (6), (7), (8), (9), and (10), respectively. It should be
noted that this adjacency checker of Konishi’s algorithm is

†More details on the data-dependent circuit will be found in
Sect. 3 and [11].

YAMAMOTO et al.: THE DESIGN AND EVALUATION OF DATA-DEPENDENT HARDWARE
2041

Fig. 4 Adjacency check circuit for Konishi’s algorithm.

fully combinatorial and finishes the operation in one cycle,
while Ullmann’s refinement procedure generally requires
multiple cycles before M converges.

Now that the adjacency checker is combinatorial, the
data-dependent Konishi circuit can be easily composed by
assigning constant values to A = [ai j] and B = [bi j]. Design
issues regarding the data-dependent circuit are described in
the next section.

3. Design Issues Relating to Data-Dependent Circuits

3.1 Data-Dependent Circuit

Generally, the logic circuit can be reduced, if any input of
the logic circuit turns out to be constant. Figure 5 illustrates
some examples of this fact. If any inputs of an AND gate
turn out to be zero, the output becomes zero (constant prop-
agation). This reduction can be applied recursively, conse-
quently reducing the logic scale of the circuit. The derived
circuit would operate at a higher frequency than the original
one, because the logic depth and wiring delay can thereby be
reduced. As the consequent circuit becomes dependent on
the input data instance, it is called a data-dependent circuit
in the following discussion.

This technique is not limited to hardware. Even in con-
ventional software, we can generate an input-specific pro-
gram from an original program and its input data. This is
known as software specialization or partial evaluation [5],
which makes a program smaller and faster.

3.2 Issues in Data-Dependent Approaches

The obvious drawback of the data-dependent approach is
that the derived circuit is not reusable, because it is special-
ized to an input instance. This naturally means that (1) we
have to generate the circuit for each input, and (2) reconfig-
urable devices such as FPGA must be used.

The total execution time T of a data-dependent circuit
is given by the sum of the circuit generation time Tgen and
the execution time Texec.

T = Tgen + Texec (11)

Here, Tgen consists of the time for HDL source code genera-
tion, logic synthesis, technology mapping, placement, rout-
ing, bitstream generation, and configuration of FPGA. Tgen

is strongly related to the logic scale, since a larger circuit
usually takes more time for circuit generation. Texec is esti-
mated by the product of the cycle count and cycle time. The
cycle count depends on the algorithm, while the cycle time
depends on the logic depth of the circuit.

Fig. 5 Reduction of logic gates.

Although there are many algorithms for a problem, the
selection is not easy. Even the fastest algorithm is of no use,
if it requires too many hardware resources for practical ap-
plications. A complicated design may reduce cycles, while
it can make cycle time larger.

Particularly for data-dependent circuits, Tgen must be
considered. Although fast algorithms make Texec smaller,
they often require more hardware resources and make Tgen

larger. It should be also noted that both Tgen and Texec are
dependent on the input data. Therefore, the total execution
time T is not so obvious without empirical studies.

3.3 Design Methodology

The simplest way to implement a data-dependent circuit is
to assign constant values to the inputs of the original circuit
description. For example, we can fix input graphs and gen-
erate a data-dependent circuit by giving constant values to
A = [ai j] and B = [bi j] in Fig. 3. Then, logic synthesis tools
automatically try to reduce logic gates by applying constant
propagation recursively. A serious problem is that it takes
too much time and memory space.

Ichikawa et al. [11] earlier conducted a preliminary
study on data-dependent circuits of Ullmann’s algorithm,
and found that simple preprocessing techniques drastically
reduce circuit generation time Tgen. These techniques are
adopted in the following evaluations in Sect. 4. An earlier
study provides more details on the techniques [11].

The data-dependent versions of Konishi’s algorithm are
also implemented and evaluated in Sect. 4. We adopted
the new design described in Sect. 2.5, and generated data-
dependent designs with the preprocessing techniques simi-
lar to that used for Ullmann’s data-dependent circuit [11].

4. Evaluation

In this section, the following 4 designs are examined.

Uo The original Ullmann circuit described in Sect. 2.3.
Ud The data-dependent version of Ullmann’s circuit. This

design is basically the same as BOTH2 in the previous
study [11] except that the target FPGA architecture is
different. Though BOTH2 was originally targeted for
Lucent OR2C FPGA, Ud is retargeted for Xilinx XC2V
FPGA [14] in the present study.

Ko The new design of Konishi’s algorithm described in
Sect. 2.5.

Kd The data-dependent version of Konishi’s circuit (Ko).

Though the datapath of Ud is simplified from that of Uo
by constant propagation, the control circuit of Ud is exactly
the same as that of Uo. That is, the cycle count of Ud is

2042
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

exactly the same as for Uo if the input data are the same.
Since the same clock signal is used for all designs (as shown
in Sect. 4.1), the execution time of Ud and Uo is the same
for the same input data. This relationship also holds for Kd
and Ko. Therefore, we do not have to measure the execution
time of Uo and Ko in the following discussion.

4.1 Evaluation Environment

The evaluation environment is summarized in Table 2. Our
target FPGA board is MIRE-MULTI3000, which contains
a Xilinx XC2V3000 FPGA [14] and a 50 MHz clock gen-
erator. In this study, all designs use 25 MHz clock, which
is generated from an on-board 50 MHz master clock. Some
pins of XC2V3000 are connected to a parallel I/O board,
which is used to start, to sense, and to stop the circuit in the
FPGA from the host computer. On-board LEDs were also
used for debugging and verification.

Data-dependent circuits (Ud and Kd) are designed on a
host computer, which is a commodity PC with an Athlon XP
processor. First, the source code generator emits a VHDL
source code, which is dependent on input graphs Gα and
Gβ. This VHDL code is passed to a logic synthesis system
to generate the netlist of a data-dependent circuit. The clock
constraint of synthesis is set to 27 MHz to give a 3-ns mar-
gin to the following process. The netlist is then passed to
Xilinx ISE for mapping, placement, routing, and bitstream
generation. The bitstream is downloaded by a JTAG cable
to configure the FPGA. The circuit generation time Tgen in-
cludes the time from VHDL code generation to bitstream
download. The host computer then starts the circuit, waits
until the end of execution, and stops the circuit, while mea-
suring the execution time texec.

Although each data-dependent circuit was verified at
25 MHz system clock, the measured execution time texec

does not fairly represent the possible execution time. There-
fore, the maximal operational frequency fmax of each data-
dependent circuit was examined after placement and rout-
ing, and the possible execution time Texec was estimated by
the following equation.

Texec = texec × 25 × 106

fmax
(12)

This Texec is used as the execution time of a data dependent

Table 2 Evaluation environment.

Item Note

Host Computer Athlon XP 2600+ (2.1 GHz), Memory 1 GB, Windows SP4
Evaluation Board (FPGA) YDK MIRE-MULTI3000 (Xilinx Virtex-II XC2V3000FF1152-4)
JTAG cable Xilinx Parallel Cable IV
Parallel I/O ADTEK aPCI–P31A
VHDL Source Code Generation Written in C, compiled with gcc-3.2 on Cygwin
Synthesis Synopsys FPGA Compiler II (2001.08-FC3.7)

(Clock Constraint: 27 MHz, used with options - Optimize: Area, Effort: Low)
FPGA CAD Xilinx ISE 5.2i (for Virtex-II architecture)
Software Implementation Ullmann’s algorithm, Written in C, compiled with gcc-3.2.2

Athlon XP 2600+ (2.1 GHz), Memory 512 MB, Red Hat Linux 9

circuit in the following discussion†.

4.2 Data Set

Obviously, the execution time of a subgraph isomorphism
problem is heavily dependent on the input graphs. There-
fore, the input data set must be carefully chosen in evalua-
tion. In this study, we only examine the cases of pα = pβ
to reduce simulation parameters. Though it would be inter-
esting to investigate more other cases, we decided to leave
them to future studies. The number of vertices is hence des-
ignated by p, instead of pα and pβ, in the following discus-
sion. Each result in this section is the average of 100 pairs
of Gα and Gβ, which are random graphs [3]. A perfect graph
Kp consists of p vertices and p (p− 1)/2 edges, while a ran-
dom graph with p vertices is generated to include each edge
of Kp at a constant probability ε (edge probability). The
symbol εα and εβ designate the edge probability of graph Gα
and Gβ, respectively.

Figure 6 displays the software execution time of Ull-
mann’s algorithm for various graph sets. The evaluation en-
vironment is shown in Table 2. In Fig. 6, RG0306 stands
for the data set of 100 random graph pairs of (εα, εβ) =
(0.3,0.6). As readily seen, RG0306 is the most time-
consuming data set, while RG0603 is the fastest. RG0303
and RG0606 are between RG0306 and RG0603. Since
the acceleration by custom circuit is particularly needed for
time-consuming cases, we examine the data set RG0306 in

Fig. 6 Software execution time of subgraph isomorphism problems.

†It should be noted that this Texec was derived from 27 MHz
timing constraint. Faster data-dependent circuits might be gener-
ated with tighter timing constraints, in exchange for longer Tgen.

YAMAMOTO et al.: THE DESIGN AND EVALUATION OF DATA-DEPENDENT HARDWARE
2043

the following discussion. Nonetheless, the data-dependent
approach is equally applicable to other cases, e.g., RG0303
and RG0606.

4.3 Logic Scale

Figure 7 displays the average logic scale of Ud and Kd for
RG0306 (8 ≤ p ≤ 16). For comparison, the original designs
Uo and Ko are also plotted on Fig. 7. The logic scale is
measured by the number of slices [14].

For example, in case of p = 16, the logic scale of Kd
was 59.9% of Ko, and that of Ud was 29.7% of Uo on av-
erage. The reduction of logic scale is larger, if εα and εβ are
smaller. The average usage of slices is 3.5% (Kd) and 8.2%
(Ud) of an XC2V3000 FPGA.

Ud was 1.43 times larger than Ko and 2.38 times larger
than Kd for p = 16. This ratio becomes larger when p is
larger. It is because the resource requirement of Ud and Uo

Fig. 7 Logic scale of RG0306.

Fig. 8 Circuit generation time of RG0306.

Table 3 Detailed circuit generation time Tgen of RG0306 (sec.).

Design p Area [slice] VHDL Synthesis Mapping P&R Bitstream Download Tgen

8 157.07 0.017 24.74 5.25 29.83 23.45 41.86 125.14
10 227.27 0.018 28.11 5.77 32.36 23.58 41.81 131.65

Kd 12 301.65 0.019 32.54 6.46 35.52 23.65 41.81 140.00
14 390.29 0.021 38.93 7.29 38.84 23.84 41.81 150.73
16 495.12 0.022 48.45 8.03 44.63 24.00 41.82 166.95
8 279.66 0.021 32.91 6.34 33.17 23.62 41.81 137.87

10 442.72 0.024 41.07 7.73 41.45 24.03 41.82 156.13
Ud 12 630.60 0.028 51.74 9.44 53.08 24.40 41.81 180.51

14 886.50 0.033 67.76 11.76 99.34 25.11 41.81 245.82
16 1180.01 0.040 89.55 14.53 128.53 25.81 41.82 300.28

is O(p3), and O(p2) for Kd and Ko [9].

4.4 Circuit Generation Time

The circuit generation time is very important in the data-
dependent approach, as stated in Sect. 3.2. The measure-
ment results of circuit generation time Tgen for RG0306 are
summarized in Fig. 8 and Table 3.

For example, Tgen of Ud is 1.80 times larger than that
of Kd for p = 16. This difference expands for larger p. The
dominant factor is logic synthesis in Kd, and P&R (place-
ment and routing) in Ud.

4.5 Execution Time

First of all, the software implementation of Ullmann’s algo-
rithm was evaluated by an Athlon XP processor. The exe-
cution environment is detailed in Table 2. The evaluation
results of software are denoted by Soft in Fig. 9. The perfor-
mance optimization of this software is very important, be-
cause it is used as a basis of evaluation in the following dis-
cussion. We adopted the following optimization techniques
to improve software performance.

• Since many bit operations are required, 32 logic values
were packed in one integer variable to implement 32
logic operations with one logical instruction.
• The iteration of the innermost loop was designed to

be long enough to suppress the startup overhead of the
loop.
• The innermost loop was designed to avoid stride ac-

cesses to utilize data cache fully.

Fig. 9 Execution time of RG0306.

2044
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

• Data structures were designed to sustain locality of
memory access. Moves and copies of data are avoided
wherever possible.
• Common subexpressions were eliminated by reusing

their values.

Figure 9 shows that Kd and Ud are much faster than
Soft. For instance, with p = 16, Kd is 26.5 times faster
than Soft on Athlon XP processor (2.1 GHz clock). Ud was
19.6 times faster on the same condition. Such performance
gain becomes larger for larger p, because Kd and Ud have
O(p) and O(p2) parallelism in the hardware, while Soft is
sequential. It should be also noted that an XC2V3000 FPGA
may contain at most 28 units of Kd, since a Kd unit occupies
only 3.5% of an XC2V3000 in case of p = 16.

Kd is faster than Ud in Fig. 9 in spite of its simpler
pruning scheme. For p = 16, the execution time of Kd and
Ud were 3.77% and 5.09% of that of Soft (5.22 × 103 sec-
onds), respectively, because the adjacency check of Kd is
faster than for Ud, as stated in Sect. 2.5. For larger graphs,
Ud is expected to be faster because the refinement procedure
of Ud restricts the search space more efficiently than Kd.

The execution time grows exponentially according to
the graph size p, which is readily seen in Fig. 9. If the prob-
lem size is a few times larger, the execution time would be
longer by a few orders of magnitude. The custom circuit is
particularly required for large problems, which take too long
to execute by software. In that sense, the data-dependent ap-
proach is significant, because it makes it possible to imple-
ment larger problems with the same hardware resources.

4.6 Total Execution Time

Figure 10 shows the total execution time, T = Tgen+Texec of
Kd and Ud, along with the software execution time (Soft).
Kd and Ud are faster than Soft for p ≥ 15, even if the circuit
generation time is included. For example, in case of p = 16,
the total performance gain of Kd and Ud are 14.4 and 9.2,
respectively.

By comparing Fig. 8 and Fig. 9, it is obvious that Texec

overwhelms Tgen with large graphs (p > 16). For small
graphs (p < 16), Tgen is superior to Texec. As the Tgen of Kd
is smaller than Ud, Kd is a better solution than Ud for small
graphs (p < 16) of RG0306. However, these small graphs

Fig. 10 Total execution time of RG0306.

are not suited to the data-dependent approach, because Soft
is fast enough in this area.

Although large graphs are of interest, it is too time-
consuming and impractical to measure 100 input pairs to
obtain the average value for such graphs. Therefore, we in-
troduce and use approximation models in the next section.

4.7 Approximation and Extrapolation

The resource requirement of Kd and Ud are known to be
O(p2) and O(p3), respectively [9]. The logic scale (or area)
of Kd and Ud are hence approximated by the following
polynomials, where AreaK and AreaU stand for the area of
Konishi’s circuit and Ullmann’s circuit. The constant fac-
tors ki (i = 0, 1, 2, 3) are fitting parameters that are specific
to each equation.

AreaK(x) = k0 + k1 x + k2x2 (13)

AreaU(x) = k0 + k1 x + k2x2 + k3x3 (14)

The approximation equation of Tgen is not obvious, but we
assumed the following equation based on measurement re-
sults. This approximation fits to reality fairly well.

Tgen(x) = k0ek1 x + k2 (15)

As shown in Sect. 2.2, the search space of subgraph isomor-
phism problems with p vertices is approximately p! (i.e., the
factorial of p). Although pruning procedures can reduce the
search space to some extent, they can not reduce the compu-
tational complexity of the problems. Therefore, Texec is ap-
proximated by the following equations, where the function
f act(x) stands for Stirling’s formula to approximate x!. This
approximation equation was confirmed by measurements,
and it fits to reality very well.

Texec(x) = k0 · f act(k1x) (16)

f act(x) ≈ √2πx
(x

e

)x
(17)

Now, we extract fitting parameters from the measure-
ment results. In case of Ko and Uo, we only have to generate
one circuit for each p, because Ko and Uo are independent
of the inputs. Therefore, it was possible for us to measure
the Uo and Ko for large p. AreaUo was modeled from the
measurement results of 8 ≤ p ≤ 40, and AreaKo was mod-
eled from 8 ≤ p ≤ 100. AreaUd and AreaKd were modeled
from the technology mapping results of 8 ≤ p ≤ 40 and
8 ≤ p ≤ 70, respectively.† Soft were extracted from the
measurements of 8 ≤ p ≤ 16. Table 4 summarizes the fit-
ting parameters for RG0306 data sets.

Figure 11 displays the approximated logic scale of Ko,
Kd, Uo, and Ud. In the figure, the symbol Ko’ is used to dis-
tinguish the approximated values from the measured values

†Although we did not place, route, and execute the data-
dependent circuits of p > 16, we synthesized and mapped them
to derive area estimation. The mapping reports for large p make
the area estimation model more precise.

YAMAMOTO et al.: THE DESIGN AND EVALUATION OF DATA-DEPENDENT HARDWARE
2045

Table 4 Fitting parameters for RG0306.

Item Design k0 k1 k2 k3

Area Ko −96.233 22.754 2.344 —
Uo 11.603 12.193 3.228 0.751
Kd 47.704 −0.573 1.805 —
Ud 254.621 −37.782 4.040 0.143

Tgen Kd 4.620 0.158 109.009 —
Ud 11.520 0.184 84.711 —

Texec Soft 6.468e-05 0.710 — —
Kd 2.640e-06 0.708 — —
Ud 1.696e-05 0.667 — —

Fig. 11 Estimated logic scale of RG0306.

Fig. 12 Estimated total execution time of RG0306.

(Ko). As an XC2V3000 contains 14336 slices, the corre-
sponding line is also shown in the figure. From Fig. 11, an
XC2V3000 is expected to contain a Uo design of p < 25.
Ud is smaller than Uo and thus fits into an XC2V3000 when
p < 40. Ko and Kd are still smaller. An XC2V3000 can
contain a Ko of p < 70 or a Kd of p < 90. These figures
seem promising for practical applications.

Figure 12 displays the approximated total execution
time of Soft, Kd, and Ud. The respective performance of
Kd and Ud would be about 30 times and 100 times higher
than Soft for p = 30. It is readily seen that there is a phase
transition around p = 16. For p > 16, Texec overwhelms
Tgen. On the other hand, Tgen is superior to Texec for p < 16.

Figure 13 displays the estimated area-time product,
which is the product of the number of slices and the execu-
tion time. The area-time product is regarded as a measure of
the ratio of cost to performance, because the cost is almost
proportional to the area, while the performance is defined by
the reciprocal of execution time. According to Fig. 13, Kd
seems more cost-effective than Ud for the RG0306 data set.

Fig. 13 Estimated area-time product of RG0306.

4.8 Another Data Set

Having examined the RG0306 data set in the above discus-
sion, we examine another data set in this section. The new
data set is called IN0306, and has the following properties.

1. All graphs are connected. Though a random graph is
not always connected, many applications assume that
the input graph is connected.

2. All input graph pairs have subgraph isomorphism. In
some applications, it is not a problem whether Gα is
included in Gβ or not; Rather, the problem is where it
is located.

In each graph pair of IN0306, Gα and Gβ have an edge den-
sity of 0.3 and 0.6, respectively. Edge density ed is a pa-
rameter that represents a character of a graph. Assume a
graph with p vertices and q edges. Edge density ed is de-
fined by the following equation: ed = (2 q)/(p (p−1)). That
is, ed is the ratio of the number of edges to that of the perfect
graph Kp. It is obvious that the following relationship holds:
0 ≤ ed ≤ 1. It is also obvious that RG0306 and IN0306 have
the same number of edges on average for the same number
of vertices.

We generated data-dependent circuits, and measured
the data for IN0306 as well as RG0306. We omit the de-
tailed results of IN0306 for lack of space, and show only the
output of approximated models of IN0306. The fitting pa-
rameters are summarized in Table 5, which was derived on
the same condition as Table 4.

The logic scale of IN0306 is almost the same as for
RG0306 (Fig. 14). Since the logic scale of data-dependent
circuit is mainly dependent on the number of edges, data-
dependent approach is almost equally effective for RG0306
and IN0306.

For large graphs of IN0306, Kd is slower than Ud, al-
though it is still much faster than Soft (Fig. 15). Konishi’s al-
gorithm is not well suited for a connected graph, while Ull-
mann’s refinement procedure works efficiently for IN0306.
For the same reason, the area-time product of Kd is slightly
inferior to Ud for p > 20 (Fig. 16).

2046
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.8 AUGUST 2004

Table 5 Fitting parameters for IN0306.

Item Design k0 k1 k2 k3

Area Ko −96.233 22.754 2.344 —
Uo 11.603 12.193 3.228 0.751
Kd 42.210 0.537 1.790 —
Ud 571.270 −107.502 8.726 0.061

Tgen Kd 5.358 0.152 105.809 —
Ud 16.145 0.166 73.852 —

Texec Soft 9.208e-05 0.657 — —
Kd 2.354e-06 0.684 — —
Ud 2.411e-05 0.608 — —

Fig. 14 Estimated logic scale of IN0306.

Fig. 15 Estimated total execution time of IN0306.

Fig. 16 Estimated area-time product of IN0306.

5. Conclusion

This study described the design and evaluation of data-
dependent circuits for subgraph isomorphism problems.
The original contributions of this study are summarized as
follows:

• Data-dependent approach was shown to be superior to
the software on a state-of-the-art microprocessor, even
if the circuit generation time is included.
• Data-dependent circuits were actually implemented on

Xilinx XC2V FPGA, and successfully operated on an
FPGA board.
• The superiority of data-dependent approach is not spe-

cific to an algorithm or an data set. Two different algo-
rithms and two distinct data sets were examined, and
the superiority of data-dependent approach was sus-
tained in all these cases.

For example, with random graphs having 16 vertices,
the execution time was about 7.0% of the software exe-
cuted on an up-to-date microprocessor (Athlon XP 2600+
of 2.1 GHz clock). Even if the circuit generation time is in-
cluded, Konishi’s data-dependent circuits were 14.4 times
faster than the software in the case of 16 vertices. The
data-dependent approach was equally effective for both of
the two algorithms (Ullmann’s and Konishi’s). For data-
dependent circuits of random graphs, Konishi’s design was
generally more cost-effective than Ullmann’s. Though Kon-
ishi’s circuit was slightly slower than Ullmann’s in case of
large graphs, the difference was little. For data-dependent
circuits of connected graphs, Ullmann’s circuit was faster
and more cost-effective for large graphs.

It should be noted that an all-round algorithm is not re-
quired for data-dependent circuits. In data-dependent circuit
design, we can choose an algorithm on a case-by-case basis,
considering the nature of the input instance. Since the in-
puts of many application programs show evident biases, we
can provide a data-specific optimization technique for these
frequently expected input patterns. According to the results
of this study, a data-dependent approach is expected to be
effective regardless of data sets and algorithms.

In this study, the estimations of logic scale and exe-
cution time for large problems were shown. However, the
data-dependent circuits for such large problems are not yet
actually implemented and evaluated. The scalability of data-
dependent approach is still an open problem and left for fu-
ture studies.

The authors expect that a data-dependent approach is
applicable to many other problems, particularly to hard-
computation problems. Data-dependent approach is well
suited for reconfigurable logic technology, and may be used
in custom computing applications with FPGA devices.

Acknowledgments

This work was partially supported by a Grant-in-Aid for
Scientific Research from the Japan Society for the Promo-
tion of Science (JSPS), the grant from the Okawa Founda-
tion for Information and Telecommunications, and the grant
from Amano Institute of Technology. Support for this work
was provided by the 21st Century COE Program “Intelligent
Human Sensing” from the Ministry of Education, Culture,
Sports, Science and Technology. The custom circuits in this

YAMAMOTO et al.: THE DESIGN AND EVALUATION OF DATA-DEPENDENT HARDWARE
2047

study were designed with Synopsys CAD tools through the
chip fabrication program of the VLSI Design and Education
Center (VDEC), the University of Tokyo.

References

[1] J. Babb, M. Frank, and A. Agarwal, “Solving graph problems with
dynamic computation structures,” SPIE Photonics East: Reconfig-
urable Technology for Rapid Product Development and Computing,
pp.225–236, 1996.

[2] J.D. Bingham and M. Serra, “Solving Hamiltonian cycle on FPGA
technology via instance to circuit mappings,” Workshop on En-
gineering Reconfigurable Hardware/Software Objects, Int’l Conf.
Parallel and Distributed Processing Techniques and Applications
(PDPTA2000), CSREA Press, June 2000.

[3] B. Bollobás, Random Graphs, second ed., Cambridge University
Press, 2001.

[4] S.T. Chakradhar and V.D. Agrawal, “A novel VLSI solution to a dif-
ficult graph problem,” Proc. 4th CSI/IEEE Int’l Symp. VLSI Design,
pp.124–129, IEEE Computer Society, 1991.

[5] C. Consel and O. Danvy, “Tutorial notes on partial evaluation,” Proc.
20th ACM Symp. on Principles of Programming Language, pp.493–
501, ACM, 1993.

[6] A. Dandalis, A. Mei, and V.K. Prasanna, “Domain specific mapping
for solving graph problems on reconfigurable devices,” Proc. 6th Re-
configurable Architecture Workshop, IPPS/SPDP Workshops 1999,
pp.652–660, IEEE, 1999.

[7] M.R. Garey and D.S. Johnson, Computers and Intractability, Free-
man, 1979.

[8] L. Huelsbergen, “A representation for dynamic graphs in recon-
figurable hardware and its application to fundamental graph algo-
rithms,” Proc. ACM/SIGDA Int’l Symp. Field Programmable Gate
Arrays (FPGA2000), pp.105–115, ACM, 2000.

[9] S. Ichikawa, H. Saito, L. Udorn, and K. Konishi, “Trade-offs in
custom circuit designs for subgraph isomorphism problem,” IEICE
Trans. Inf. & Syst., vol.E86-D, no.7, pp.1250–1257, July 2003.

[10] S. Ichikawa, L. Udorn, and K. Konishi, “An FPGA-based imple-
mentation of subgraph isomorphism algorithm,” IPSJ Transactions
on High Performance Computing Systems, vol.41, no.SIG5 (HPS1),
pp.39–49, 2000.

[11] S. Ichikawa and S. Yamamoto, “Data dependent circuit for subgraph
isomorphism problem,” IEICE Trans. Inf. & Syst., vol.E86-D, no.5,
pp.796–802, May 2003.

[12] O. Mencer, Z. Huang, and L. Huelsbergen, “HAGAR: Efficient
multi-context graph processors,” Proc. 12th Int’l Conf. Field-
Programmable Logic and Applications (FPL2002), LNCS2438,
pp.915–924, Springer, 2002.

[13] J.R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol.23, no.1, pp.31–42, 1976.

[14] Xilinx Inc., VirtexTM-II Platform FPGAs: Introduction and
Overview, 2002.

[15] H. Yamamoto and S. Ichikawa, “Evaluation of data-dependent cir-
cuits for adjacency check,” Proc. IEICE Gen. Conf. 2003, p.64,
2003.

Shoji Yamamoto received his B.E. degree
in 2002 and M.E. degree in 2004 from the De-
partment of Knowledge-based Information En-
gineering of Toyohashi University of Technol-
ogy. He is presently with Buffalo Inc.

Shuichi Ichikawa received his D.S. degree
in Information Science from the University of
Tokyo in 1991. He has been affiliated with Mit-
subishi Electric Corporation (1991–1994), Na-
goya University (1994–1996), and Toyohashi
University of Technology (since 1997). Cur-
rently, he is an associate professor of the De-
partment of Knowledge-based Information En-
gineering of Toyohashi University of Technol-
ogy. His research interests include parallel and
distributed processing, high-performance com-

puting, and custom computing systems. He is a member of ACM, IEEE,
and IPSJ.

Hiroshi Yamamoto received his B.E. degree
in 2003 from the Department of Knowledge-
based Information Engineering of Toyohashi
University of Technology. Presently, he is
studying for his master’s degree at that institu-
tion. He is a student member of the IPSJ.

