
2876
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.12 DECEMBER 2005

LETTER

Design and Evaluation of Hardware Pseudo-Random Number
Generator MT19937∗∗

Shiro KONUMA†∗, Student Member and Shuichi ICHIKAWA†,††a), Member

SUMMARY MT19937 is a kind of Mersenne Twister, which is a
pseudo-random number generator. This study presents new designs for
a MT19937 circuit suitable for custom computing machinery for high-
performance scientific simulations. Our designs can generate multiple ran-
dom numbers per cycle (multi-port design). The estimated throughput of a
52-port design was 262 Gbps, which is 115 times higher than the software
on a Pentium 4 (2.53 GHz) processor. Multi-port designs were proven to
be more cost-effective than using multiple single-port designs. The initial-
ization circuit can be included without performance loss in exchange for a
slight increase of logic scale.
key words: custom circuit, simulation, random number, Mersenne Twister,
FPGA

1. Introduction

Random numbers are frequently used in scientific applica-
tions, particularly for simulations. One of the typical exam-
ples is the Monte Carlo method in computational physics,
and it is well known that the result of a simulation is seri-
ously affected by the quality of the random number gener-
ator. Pseudo-random number generators (PRNG) are usu-
ally adopted in such simulations for performance and repro-
ducibility, but the quality of existing PRNG (e.g., linear con-
gruent algorithms) is not sufficient for precise simulations.

The Mersenne Twister (MT) [1] is a PRNG that was
proposed by Matsumoto and Nishimura in 1997. MT is
highly suited to simulation because of its various advan-
tages: mathematical background, uniformity, long period,
multi-dimensional equidistribution, and high performance.

Recently, custom computing machinery is expected to
accelerate simulations. In such machinery, PRNG also have
to be implemented with logic circuits. The purpose of this
study is to evaluate various designs of MT19937, a type of
MT. MT19937 is well suited for scientific simulations for its
long period (219937 − 1) and 623-dimensional equidistribu-
tion. The reference code of MT19937 is provided for public

Manuscript received May 30, 2005.
Manuscript revised August 11, 2005.
†The authors are with the Department of Knowledge-based

Information Engineering, Toyohashi University of Technology,
Toyohashi-shi, 441-8580 Japan.
††The author is with the Intelligent Sensing System Research

Center, Toyohashi University of Technology, Toyohashi-shi, 441-
8580 Japan.

∗Presently, with Chuo System Corporation.
∗∗This work partially appeared as an extended abstract in the

2005 Annual Meeting Record IEE Japan, vol.3, pp.89–90 (March
2005).

a) E-mail: ichikawa@tutkie.tut.ac.jp
DOI: 10.1093/ietisy/e88–d.12.2876

Fig. 1 Block diagram of SMT/PMT.

use [2].
Kurokawa et al. [3], [4] reported a MT circuit design

which was implemented as a peripheral device through a
PCI bus. Their circuit [4] requires two cycles to generate
one random number, and thus its performance is limited to
0.52 Gbps with a Xilinx XCV50 FPGA. Since their circuit
does not include an initialization circuit, it must be exter-
nally initialized.

This study presents improved designs of the MT cir-
cuit, which are suited for high-performance simulations by
custom computing machinery. Our designs generate one or
more random numbers per cycle. They are highly suited
to fully-pipelined or parallel implementations of simulation
circuits. Circuits with initialization circuits are also exam-
ined and evaluated.

2. Designs of MT19937 Circuit

A basic MT19937 circuit consists of three modules: RAM,
Generate, and Temper. RAM memorizes the internal state of
MT19937. Generate calculates the next state of the circuit
from the current state. Temper generates a random number
from the next state. The block diagram of this basic circuit
is shown in Fig. 1, where M is a constant 397. This circuit
literally implements the algorithm of the reference code [2].

If Fig. 1 is implemented sequentially, the circuit will

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



LETTER
2877

consume four cycles (3 read and 1 write cycles) to generate
one random number. Implementing RAM with a dual-port
RAM, one random number would be generated every two
cycles. The latter design is designated as SMT in the fol-
lowing discussion.

SMT is functionally equivalent to the circuit shown by
Kurokawa and Kajisaki [4]. Though SMT and Kurokawa’s
design adopt the same algorithm to generate one random
number every two cycles, the implementations are slightly
different. In Kurokawa’s design, one read port of RAM was
omitted by reusing the value of the previous cycle. This
could make RAM resource smaller in exchange for a slight
increase of logic scale and start-up cycles. In SMT, we did
not adopt this technique, because it was possible for us to
implement SMT without problem with a small amount of
RAM.† It should be noted that all these things are the matters
of implementation, which are dependent on the implemen-
tation platform (particularly on the specifications of RAM
primitives). Since our platform (Altera Stratix FPGA) is dif-
ferent from Kurokawa’s (Xilinx Virtex FPGA), the resulting
implementations would be different, even if the function is
the same. We intended to make SMT simple and portable,
rather than making it optimized for a specific platform.

SMT can be extended to generate one random num-
ber for each cycle by using a multi-port RAM with 3R/1W
ports. This design is designated as PMT. PMT is further
enhanced by using a multi-bank configuration to generate
multiple random numbers per cycle. Figure 2 illustrates an
example of a 2-port PMT circuit (PMT2), which generates
two random numbers in a cycle. In PMT2, the RAM of PMT
is split into two banks; RAM0 and RAM1. RAM0 contains
the elements of even indices, while RAM1 contains the el-
ements of odd indices. RAM0 and RAM1 are multi-port
RAMs, which have 3R/1W ports and 2R/1W ports, respec-
tively. The idea of PMT2 corresponds to the unrolling of
the innermost loop of software. PMT2 can be naturally ex-
tended to n-port PMT (PMTn), where n is a factor of 624.
In this study, PMT2, PMT4, PMT8, PMT16, and PMT52
were designed and examined.

In a scientific simulation, it is a routine to generate mul-
tiple random numbers at the same time; for example, when
one wishes to generate a particle in simulation physics. Four
random numbers for its mass and three coordinates may be
needed, or, six random numbers may be needed for its posi-
tion vector and velocity vector. PMTn is suited to implement
such cases with hardware.

MT is based on the Generalized Feedback Shift Reg-
ister (GFSR) [1], which can be naturally implemented by
chained registers (Fig. 3). This design is designated as FMT
in the following discussion. FMT is also extensible to n-port
implementations (FMTn) which generate n random num-
bers in each cycle (1 ≤ n ≤ 227). Figure 4 illustrates a
2-port version of FMT (FMT2).

PMT and its derivatives are based on RAM, which is
well structured and suited for high-density implementation.
However, the operational frequency of PMT is restricted by
the access time of RAM. FMT and its derivatives have sim-

Fig. 2 Block diagram of PMT2.

Fig. 3 Block diagram of FMT.

ple structures, operate at higher clock frequencies than PMT,
and require more logic gates than the PMT family.

MT19937 requires the initial internal states of 624
words, where each word contains 32 bits. These initializa-
tion data can be downloaded from outside the circuit, as in
the preceding studies [3], [4]. Or, one may include the ini-
tialization circuit which generates initial states from a given
seed. In a hardware simulation, many PRNG circuits could
be used in parallel. For such cases, it is desirable to include
an initialization circuit with PRNG to reduce initialization
overhead. Therefore, in this study, we examined the ini-
tialization circuit, which includes a multiplier and an adder.
This circuit generates 32-bit data each cycle, consequently
finishing initialization in 624 cycles. The MT circuits with
initialization circuit are designated by the postfix “ in” in

†As shown in Sect. 3, one SMT unit requires 19 Kbit of RAM,
which is as small as 2.2% of the total RAM capacity of an EP1S10
device (920 Kbit).



2878
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.12 DECEMBER 2005

Table 1 Evaluation results.

Circuit Logic Max. Freq. Memory DSP Block AT product Throughput
(LE) (MHz) (bit) (block) (LE × sec.) (Gbps)

mt19937ar.c – – – – – 2.28

SMT 298 128.02 19,968 0 4.656e − 6 2.05
PMT 278 143.04 39,936 0 1.944e − 6 4.56
FMT 5,570 222.27 14,336 0 2.506e − 5 7.11

PMT2 405 128.30 39,936 0 1.578e − 6 8.21
PMT4 620 140.61 39,936 0 1.102e − 6 18.00
PMT8 1,027 115.05 39,936 0 1.116e − 6 29.45

PMT16 1,866 84.83 39,936 0 1.375e − 6 43.43
PMT52 5,700 71.63 39,936 0 1.530e − 6 119.19

FMT2 20,101 190.22 0 0 5.284e − 5 12.17
FMT4 20,209 188.82 0 0 2.676e − 5 24.17
FMT8 20,453 175.56 0 0 1.456e − 5 44.94

FMT16 20,886 181.26 0 0 7.202e − 6 92.81
FMT52 22,926 157.60 0 0 2.797e − 6 262.25

SMT in 427 63.03 19,968 8 1.355e − 5 1.01
PMT in 402 64.17 39,936 8 6.265e − 6 2.05

PMT2 in 538 63.65 39,936 8 4.226e − 6 4.07
PMT4 in 736 64.42 39,936 8 2.856e − 6 8.25
PMT8 in 1,154 63.48 39,936 8 2.272e − 6 16.25
PMT16 in 1,987 62.70 39,936 8 1.981e − 6 32.10
PMT52 in 5,827 62.24 39,936 8 1.800e − 6 103.57

SMT in4 557 132.29 19,968 8 8.421e − 6 2.12
PMT in4 498 148.43 39,936 8 3.355e − 6 4.75
PMT2 in4 630 128.06 39,936 8 2.460e − 6 8.20
PMT4 in4 844 110.83 39,936 8 1.904e − 6 14.19
PMT8 in4 1,252 103.85 39,936 8 1.507e − 6 26.59

PMT16 in4 2,091 95.76 39,936 8 1.364e − 6 49.03
PMT52 in4 5,925 74.16 39,936 8 1.536e − 6 123.40

rand 35 65.10 0 8 5.376e − 7 2.08
lrand48 72 56.04 0 16 1.285e − 6 1.79
LFSR 33 390.02 0 0 8.461e − 9 12.48

Fig. 4 Block diagram of FMT2.

the following discussion.

3. Evaluation

The abovementioned designs were described in VHDL, then

synthesized and implemented for Altera Stratix FPGA [5]
using Quartus-II 4.0 software. The target device was set to
EP1S10F780C7ES. Design results are summarized in Ta-
ble 1. For comparison, the performance of the reference
software of MT19937 (mt19937ar.c) [2] was measured with
an Intel Pentium 4 (2.53 GHz) processor, 1.0 GB main mem-
ory, gcc 3.2.3 -O, and FreeBSD 4.10.

Logic gates are counted by LE (logic elements) in
Stratix architecture. Besides logic gates, some designs re-
quire memory elements and DSP blocks. A DSP block is
a building block for a multiplier-adder, which is automat-
ically used if the design includes multipliers. Area-Time
product (AT product) is the product of the number of LEs
and the time required to generate one random number; in
other words, the AT product stands for the logic gates re-
quired to generate a random number in a unit time. Thus, a
smaller AT product means a more efficient design.

The performances of PMT and FMT were superior
to that of the software on Pentium 4 (2.53 GHz). Com-
paring SMT, PMT, and FMT, FMT operates at the high-
est frequency and shows the largest throughput. However,
FMT requires far more LEs than the PMT, because registers
(or flipflops) are relatively expensive resources in FPGA.
Though the FMT design does not include any RAM explic-
itly, the derived FMT circuit includes RAM; this is because



LETTER
2879

a simple FIFO structure was automatically implemented us-
ing RAM components. On the other hand, PMT inherently
includes RAM blocks and naturally fits in FPGA.

Multi-port designs (PMTn and FMTn) show very
high throughput, compared to the original PMT and FMT.
Though the performance of FMTn is very high, FMTn is
too large to fit into an EP1S10 device (10570 LE). PMTn
is relatively small and fast. It should also be noted that
PMTn is more cost-effective than PMT. For example, re-
placing a PMT2 with two PMTs, 37% more LE and 100%
more memory resources are required for 11% more through-
put. Though it is possible to use two or more MTs in par-
allel, they must be carefully chosen to be mutually inde-
pendent [6]. Meanwhile, using PMTn is easy and simple to
migrate from software simulation to hardware simulation.
Considering all these facts, PMTn and FMTn would be bet-
ter choices in many cases.

The circuits with an initialization circuit were also eval-
uated (SMT in, PMT in, and PMTn in).† Though the in-
crease of logic scale is negligible, the operational frequency
is restricted to 63–64 MHz, because the multiplier-adder in
the initialization circuit forms a new critical path. To avoid
this critical path, we simply split the multiplier into 4 clock
cycles. This makes initialization cycles 4 times longer, but
the operational frequencies of resulting circuits become al-
most comparable to the corresponding circuits without ini-
tialization circuitry. These circuits are designated by the
postfix “ in4” in Table 1.

For comparison, we examined three other PRNG cir-
cuits: rand, lrand48, and LFSR. Two ANSI C functions,
rand and lrand48 of the BSD version, are based on a classic
linear congruent algorithm, while LFSR is a standard imple-
mentation of the Linear Feedback Shift Register. The peri-
ods of rand, lrand48, LFSR, MT19937 are 230, 248, 232 − 1,
and 219937 − 1, respectively. Although rand, lrand48, and
LFSR are smaller than ours, their throughputs are less than
ours. It is readily seen that our MT circuits are superior in
both performance and period.

4. Conclusion

This study presented new designs for a MT19937 circuit,

†FMT and FMTn were excluded here, since they are too large
in logic scale.

which can generate multiple random numbers per cycle
(multi-port designs). The estimated throughput of a 52-port
design (FMT52) is 262 Gbps, which is 115 times higher than
the software on a Pentium 4 (2.53 GHz) processor. Multi-
port designs were shown to be more cost-effective than us-
ing multiple single-port designs. The initialization circuit
can be included without performance loss in exchange for a
slight increase of logic scale.

Two of our designs (SMT in and PMT in) were ac-
tually implemented on a Stratix EP1S10 evaluation board,
and they were proven to be fully operational. Our designs
are written in VHDL, built on standard components, and
thus very portable and widely applicable. With our designs,
PRNG circuits with MT algorithms could be more easily
and widely applicable in custom computing hardware for
scientific simulations.

Acknowledgment

This work was partially supported by a Grant-in-Aid for Sci-
entific Research from the Japan Society for the Promotion of
Science (JSPS). Support for this work was also provided by
the 21st Century COE Program “Intelligent Human Sens-
ing” from the Ministry of Education, Culture, Sports, Sci-
ence and Technology.

References

[1] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Trans. Model. Comput. Simul., vol.8, no.1, pp.3–30,
1998.

[2] M. Matsumoto, “Mersenne Twister: A random number generator,”
http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/mt.html

[3] T. Kurokawa and S. Fujimoto, “Development of Mersenne Twister
using CPLDs,” IEICE Trans. Inf. & Syst. (Japanese Edition), vol.J84-
D-I, no.5, pp.501–504, May 2001.

[4] T. Kurokawa and H. Kajisaki, “FPGA based implementation of
Mersenne Twister,” Scientific and Engineering Reports of the Na-
tional Defense Academy, vol.40, no.2, pp.15–21, March 2003.

[5] Altera Corp., Stratix Device Handbook, July 2003.
http://www.altera.com/

[6] M. Matsumoto and T. Nishimura, “Dynamic creation of pseudoran-
dom number generators,” in Monte Carlo and Quasi-Monte Carlo
Methods 1998, pp.56–69, Springer, 2000.


