
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006
219

LETTER Special Section on Cryptography and Information Security

Redundancy in Instruction Sequences of Computer Programs

Kazuhiro HATTANDA†∗, Nonmember and Shuichi ICHIKAWA†,††a), Member

SUMMARY There is redundancy in instruction sequences, which can
be utilized for information hiding or digital watermarking. This study quan-
titatively examines the information capacity in the order of variables, basic
blocks, and instructions in each basic block. Derived information density
was 0.3% for reordering of basic blocks, 0.3% for reordering instructions
in basic blocks, and 0.02% for reordering of global variables. The per-
formance degradation caused by this method was less than 6.1%, and the
increase in the object file size was less than 5.1%.
key words: information hiding, reordering, basic block, digital watermark

1. Introduction

There are many instruction sequences that correspond to a
program, any of which serves users equally as long as they
are functionally equivalent. In other words, there is redun-
dancy in constructing instruction sequences of a program.
Such redundancy can be utilized for watermarking or infor-
mation hiding [1].

Davidson and Myhrvold [2] invented a method to gen-
erate a signature on a computer program. They pointed
out that the basic blocks of a computer program can be re-
ordered arbitrarily without changing the behavior of the pro-
gram if jump instructions are correctly inserted and main-
tained. Their idea is to embed a signature as a reordered
sequence of basic blocks. Davidson’s scheme was quantita-
tively evaluated by Hattanda and Ichikawa [3].

El-Khalil and Keromytis [4] mentioned that the order
of arguments and the register allocation choice are usable
for information hiding. They also stated that they can en-
code information by ordering functions and various tables
in an object file, and that the estimated encoding rate of this
method is 2.8% of the code size. Here, it should be noted
that the redundancy in an object file is not equivalent to the
redundancy in an object code.

Though other objects are similarly usable to embed a
signature, no quantitative evaluations have been reported to
date. In this study, we concentrated on evaluating the redun-

Manuscript received March 22, 2005.
Manuscript revised June 18, 2005.
Final manuscript received August 4, 2005.
†The authors are with the Department of Knowledge-based

Information Engineering, Toyohashi University of Technology,
Toyohashi-shi, 441-8580 Japan.
††The author is with the Intelligent Sensing System Research

Center, Toyohashi University of Technology, Toyohashi-shi, 441-
8580 Japan.

∗Presently, with Hitachi Information and Control Systems, Inc.
a) E-mail: ichikawa@tutkie.tut.ac.jp

DOI: 10.1093/ietfec/e89–a.1.219

dancy in instruction sequences, particularly in the order of
variables and instructions.

It is very difficult to count all redundancies, since there
are many options. Therefore, in this study, only four options
are examined: (1) reordering global variables, (2) reordering
local variables, (3) reordering basic blocks, and (4) reorder-
ing instructions in each basic block. The performance and
object size of benchmark programs are also examined before
and after the reordering. All measurements were made with
ELF object files for Intel x86 architecture [5], which were
generated from C programs using GCC 2.95.3 and binutils
2.13.

2. Reordering of Variables

Generally, users are unaware of the addresses of variables.
Therefore, we can construct functionally-equivalent pro-
grams by reordering the variables in the main memory.
Since there are n! options to arrange n elements, we can gen-
erate n! functionally-equivalent instruction sequences with n
variables.

In C language, variables are categorized into global and
local variables. Global variables are further categorized into
sub-categories; external variables, uninitialized variables,
and initialized variables. Uninitialized and initialized vari-
ables are registered in .bss and .data sections, respectively,
and thus can be reordered by changing the order of defini-
tion in assembly files after compilation. To reorder external
variables, we had to add a new feature to the linker (ld) to
arbitrarily change the addresses of external variables.

Local variables are allocated on a stack or on registers.
Local variables on a stack are accessed via the EBP register
with the offset values that are assigned by compiler. There-
fore, it is possible to reorder local variables on a stack by
adding a new feature to the C compiler. Further redundancy
in register allocation could also be utilized by enhancing the
C compiler. However, this redundancy was not examined in
this work, leaving it for future studies.

3. Reordering of Instructions

An instruction sequence is divided into basic blocks, each of
which is a sequence of instructions that is executed straight
from beginning to end. The addresses of basic blocks can be
arbitrarily reordered without changing the behavior of the
program if the order of execution is maintained by adding
unconditional jump instructions properly (Fig. 1). This re-

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

220
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

Fig. 1 Reordering basic blocks.

Fig. 2 Reordering instructions in each basic block.

dundancy may be used to embed a digital signature into a
program [2]. The obvious drawbacks of this method are the
increase in program size and the performance degradation
caused by additional jump instructions. These overheads
were quantitatively evaluated and reported by the authors
using MIPS architecture [3].

In this current study, the authors developed a program
that counts the redundancy in the order of basic blocks. This
program reads an assembly file, divides it into basic blocks,
and reorders these basic blocks, while reporting the degree
of redundancy.

It is also possible to reorder instructions in a basic
block if the resulting instruction sequence is functionally
equivalent to the original one. For example, in Fig. 2, the
instructions (1) and (2) are exchangeable, because both se-
quences yield the same result.

Let Re f [x] and S to[x] be the sets of read operands
and write operands of an instruction x, respectively.
Here, Re f [x] and S to[x] include both explicit and implicit
operands. Explicit operands are designated as arguments of
an instruction, while implicit operands are referred or up-
dated without explicit designation. For example, PUSH EAX
[5] instruction pushes the value of EAX register onto stack.
Though its explicit operand is an EAX register, PUSH in-
struction implicitly refers to SS (stack segment) and ESP
(stack pointer) registers to modify memory and ESP regis-
ter. Consequently, the read and write operands of PUSH EAX
are {EAX, S S , ES P} and {ES P,memory}, respectively.

Instructions x and y are independent if the following
condition holds: Re f [x] ∩ S to[y] = S to[x] ∩ Re f [y] =
S to[x] ∩ S to[y] = φ. If two adjacent instructions are inde-
pendent, these two instructions are mutually exchangeable.
In this study, another program was developed to reorder in-
structions in each basic block and to count possible combi-
nations of functionally equivalent instruction sequences in
an assembly file.

It should be noted that the instructions (1) and (2) in
Fig. 3 are not exchangeable by the rule in the previous para-
graph, because both instructions are arithmetic instructions
that implicitly affect status flags in the EFLAGS register;
i.e., S to[(1)]∩S to[(2)] � φ. Actually, status flags are imme-

Fig. 3 Unexchangeable instructions.

diately overwritten by the next instruction (3), and therefore
(1) and (2) could be exchangeable. Although flow analysis
is required to recognize such redundancy, we left this issue
for future studies. Hence, there are still some redundancies
left in the order of instructions in each basic block.

4. Experiments and Results

The options to arrange n items are n! = O(nn), which is dif-
ficult to handle when n is large. Thus, PPS (Partial Permu-
tation Scheme) [6] was adopted in this study. Items are di-
vided into chunks, each of which includes 6 items (6! = 720
options). Odd items were excluded from measurements.
The redundancy derived from m chunks is thus 720m; i.e.,
m chunks can carry maximally m log2 720 ≈ 9.49m bit of
information (information capacity).

Table 1 lists some open source programs in C language
which were selected for experiments in this study. As read-
ily seen from Table 1, the information capacity of basic
block reordering and instruction reordering is larger than
that of variable reordering, because the number of instruc-
tions is usually larger than the number of variables. In opti-
mized object codes, local variables are allocated to registers,
and practically no information capacity is derived from local
variables. It is thus necessary to examine the redundancy of
register allocation, but that is also left to future studies.

Figures 4 and 5 display the relationships between ob-
ject file size and the information capacity in reordering basic
blocks and instructions in basic blocks, respectively. Infor-
mation density, which is defined by information capacity di-
vided by the corresponding object file size, was estimated to
be 0.3% for reordering of basic blocks (Fig. 4), 0.3% for re-
ordering of instructions in basic blocks (Fig. 5), and 0.02%
for reordering of global variables.

These techniques may have some negative impact on
the performance and size of the instruction sequences. The
overhead of reordering depends on the order taken; i.e.,
it depends on the data embedded in the program. Thus,
we measured the average performance and size of 100 re-
ordered sequences, each of which embeds a random num-
ber. Target programs are three simple benchmark programs:
dhrystone, linpack, and whetstone.

In reordering basic blocks, a maximally 6.1% perfor-
mance degradation was observed on an Intel Xeon 2.8 GHz
system for three benchmark programs; the performance
degradation was less than 3.1% in the other three reorder-
ing techniques. Basic block reordering incurs (maximally)
a 5.1% increase in object file sizes for three benchmark pro-
grams; no increase was observed in the other three reorder-
ing techniques.

LETTER
221

Table 1 Information capacity in sample programs with four reordering methods.

Program Compile option #Func. #Line Object file Information capacity [byte]
size [byte] Global Local Basic block Instruction

dhry 1.c -DHZ=100 -DTIME 6 385 7464 2.37e+00 1.19e+00 2.37e+01 1.54e+01
dhry 2.c 6 192 1936 0.00e+00 0.00e+00 7.12e+00 4.29e+00
linpackc.c -DDP -DUNROLL 12 907 15856 2.37e+00 4.75e+00 6.53e+01 6.84e+01
whetstone.c 4 433 5984 1.19e+00 4.75e+00 1.90e+01 1.79e+01
dhry 1.c -DHZ=100 -DTIME -O2 6 385 7064 2.37e+00 0.00e+00 2.02e+01 1.35e+01
dhry 2.c -O2 6 192 1600 0.00e+00 0.00e+00 5.93e+00 1.62e+00
linpackc.c -DDP -DUNROLL -O2 12 907 11848 2.37e+00 0.00e+00 5.46e+01 5.32e+01
whetstone.c -O2 4 433 4096 1.19e+00 0.00e+00 1.42e+01 1.32e+01
ed/main.c default option (-O) 26 1684 38704 9.49e+00 0.00e+00 1.29e+02 3.21e+01
ed/regex.c default option (-O) 26 5171 28428 0.00e+00 0.00e+00 1.40e+02 1.19e+02
bzip2.c default option (-O2) 43 2103 31936 3.56e+00 0.00e+00 7.24e+01 5.10e+01
gzip.c default option (-O) 23 1744 28132 9.49e+00 0.00e+00 5.58e+01 4.76e+01
gcc.c default option (-O2) 50 5840 77448 1.90e+01 0.00e+00 2.56e+02 2.50e+02
ldmain.c default option (-O2) 20 1376 20512 1.19e+00 0.00e+00 3.68e+01 3.66e+01
ldlang.c default option (-O2) 126 5525 48128 5.93e+00 0.00e+00 1.44e+02 1.06e+02

Fig. 4 Information density by reordering basic blocks.

Fig. 5 Information density by reordering instructions in each basic
block.

5. Conclusion

The encoding rate of our techniques can be improved, as
stated in Sects. 3 and 4. Though the information density
by variable reordering is smaller than that by instruction re-
ordering, it is still important, because these two methods are
mutually independent. Two independent techniques might
be used together to avoid forgery of the digital signature [6].

El-Khalil and Keromytis [4] presented a system, named
Hydan, which embeds information in x86 binaries. In their
scheme, an instruction sequence is selected from a prede-
fined set of functionally equivalent sequences. For exam-
ple, “add %eax, $50” and “sub %eax, $-50” are functionally

equivalent, and thus one bit of information could be em-
bedded by selecting one of them. They reported that their
encoding rate is 0.9% of the code size, which corresponds
to about 0.7% of the object file size. This rate is almost
comparable to ours. The scheme of Hydan is basically dif-
ferent from ours, because we only change the arrangement
of objects without replacing them. This suggests that these
two schemes could be used together to increase information
density or encoding rates.

Cooperation with other techniques should also be ex-
amined for higher encoding rates. There are many other
schemes to embed information in computer programs. More
extensive survey and quantitative investigations are re-
quired.

Acknowledgment

This work was partially supported by a Grant-in-Aid for Sci-
entific Research from the Japan Society for the Promotion of
Science (JSPS). Support for this work was also provided by
the 21st Century COE Program “Intelligent Human Sens-
ing” from the Ministry of Education, Culture, Sports, Sci-
ence and Technology.

References

[1] C.S. Collberg and C. Thomborson, “Watermarking, tamper-proofing,
and obfuscation—Tools for software protection,” IEEE Trans. Softw.
Eng., vol.28, no.8, pp.735–746, Aug. 2002.

[2] R.I. Davidson and N. Myhrvold, “Method and system for generat-
ing and auditing a signature for a computer program,” U.S. Patent
5,559,884, Sept. 1996.

[3] K. Hattanda and S. Ichikawa, “The evaluation of Davidson’s digi-
tal signature scheme,” IEICE Trans. Fundamentals, vol.E87-A, no.1,
pp.224–225, Jan. 2004.

[4] R. El-Khalil and A.D. Keromytis, “Hydan: Hiding information in pro-
gram binaries,” Proc. 6th Int’l Conf. Information and Communica-
tions Security (ICICS’04), LNCS 3269, pp.187–199, Springer, 2004.

[5] Intel Corporation, Intel Architecture Software Developer’s Manual,
1997, http://www.intel.com/

[6] S. Ichikawa, H. Chiyama, and K. Akabane, “Redundancy in 3D poly-
gon models and its application to digital signature,” J. WSCG, vol.10,
no.1, pp.225–232, 2002.

