
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008
211

PAPER Special Section on Cryptography and Information Security

Diversification of Processors Based on Redundancy in Instruction
Set∗

Shuichi ICHIKAWA†,††a), Member, Takashi SAWADA†, and Hisashi HATA†, Student Members

SUMMARY By diversifying processor architecture, computer software
is expected to be more resistant to plagiarism, analysis, and attacks. This
study presents a new method to diversify instruction set architecture (ISA)
by utilizing the redundancy in the instruction set. Our method is partic-
ularly suited for embedded systems implemented with FPGA technology,
and realizes a genuine instruction set randomization, which has not been
provided by the preceding studies. The evaluation results on four typical
ISAs indicate that our scheme can provide a far larger degree of freedom
than the preceding studies. Diversified processors based on MIPS archi-
tecture were actually implemented and evaluated with Xilinx Spartan-3
FPGA. The increase of logic scale was modest: 5.1% in Specialized design
and 3.6% in RAM-mapped design. The performance overhead was also
modest: 3.4% in Specialized design and 11.6% in RAM-mapped design.
From these results, our scheme is regarded as a practical and promising
way to secure FPGA-based embedded systems.
key words: FPGA, embedded systems, instruction set, randomization, se-
cure processor

1. Introduction

Recently, software protection is becoming increasingly im-
portant. Infringement of copyright by software piracy, leak-
age of trade-secrets by reverse engineering, and attacks by
malicious programs are all recognized as serious problems.

Forrest et al. [1] pointed out that the diversity of soft-
ware could potentially increase the robustness of software
systems. Although homogeneous systems have many ad-
vantages, such homogeneity makes malicious activities eas-
ier. For example, viruses often exploit the weakness of soft-
ware to inject a binary code which alters the execution flow
of a program (injection attack). Since an injection attack
usually aims at a specific architecture, viruses easily spread
among homogeneous systems.

Binary code injection would be more difficult, if each
system had its own instruction set architecture. Such di-
versity would also obstruct piracy of software, because the
software for a specific platform does not operate on other
platforms. Reverse engineering of software would be also
difficult without complete knowledge of the target architec-
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ture.
Although diversity has various advantages, processors

of PCs and servers have been dominated by a small num-
ber of architectures. One reason is that users have profited
more from monopoly than from diversity; another is that
it is a logical consequence from the manufacturers’ stand-
point. Since recent software requires considerable process-
ing power, competitive processors have to be manufactured
with the latest process technology, which is very expensive.
It is thus inevitable to mass-produce each processor, which
naturally leads to oligopoly of processor architecture.

However, the situation is quite different for embedded
systems, where requirements differ with their applications,
and many systems are produced in relatively small quan-
tities. Embedded systems do not necessarily require high-
performance processors, but they often necessitate low-
power and low-cost solutions. It is also very common to
adopt SoC (System on Chip) technology, which integrates
the processor and peripheral circuits into an LSI chip. As
a result, various processors are used in embedded systems
according to their purposes and applications.

Portability is not regarded as crucial in embedded soft-
ware, because the latter is usually shipped as a part of the
system. Rather, protection of software is a matter of crit-
ical importance. For example, copies might appear on the
market if embedded software can be easily pirated. Valu-
able trade secrets might be unveiled and stolen, if reverse-
engineering is easy. In manufacturing and transportation
machinery, unauthorized modification of embedded soft-
ware might result in serious accidents. Therefore, tamper
resistance is very important and profitable in embedded sys-
tems.

Recent embedded systems often adopt FPGA (Field
Programmable Gate Array) chips for implementation.
FPGA is a reconfigurable logic LSI, which can maximally
contain 100 million logic gates, 1 Mbyte of memory, and
fast multipliers with the leading-edge process technology
(90 nm process as of 2006). It is also popular to imple-
ment a microprocessor with the fabric of FPGA (soft-core
processor). Since FPGA is flexible and suited to implement
various systems on an item-by-item basis, it is well-suited
to implement embedded systems, many of which are pro-
duced in small quantities. It is very easy to obtain diversity
in embedded systems implemented with FPGA technology.

This study presents a method to diversify processors
by utilizing the redundancy in instruction set architecture,
which is particularly suited to embedded systems. Available
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redundancies are estimated with some instruction sets, and
the derived results are compared with the results of existing
methods. The evaluation results of FPGA implementations
are also shown for quantitative discussion of implementa-
tion cost and performance overheads.

2. Related Studies

There are many preceding studies on tamper-resistant hard-
ware. Encryption of memory image is one of the typi-
cal approaches to avoid tapping and tampering. This ap-
proach was adopted by XOM (execute-only memory) [2],
AEGIS [3], and SP-processor [4]. Another typical approach
is to verify MAC (message authentication codes) of memory
blocks to detect tampering. SPEF (secure program execu-
tion framework) [5] embeds encrypted, processor-specific
constraints into each block of instructions at software in-
stallation time to verify their existence at run-time. BBST
[6] maintains MACs of basic blocks for verification, while
SAFE-OPS [7] integrates an FPGA-based secure hardware
component for dynamic verification of MAC.

Dynamic memory encryption and MAC verification in-
evitably involve performance overhead caused by the in-
crease of memory access latency. For XOM, one-time-
pad encryption [8], [9] and memory predecryption [10] have
been proposed to hide memory access latencies. To hide
MAC verification latency for SPEF, Drinić and Kirovski
[11] introduced overlapping of program execution and MAC
verification, where instructions are speculatively executed
and committed only after verifying the MAC value.

Forrest et al. [1] suggested increasing the robustness
of computer systems by diversification and randomization.
Shacham et al. [12] discussed the merits of address-space
randomization, basically assuming software implementa-
tions. In connection with the diversification of instruction
set architecture, instruction set randomization [13]–[15] has
been studied. Though there are various levels and means
to randomize an instruction set, their advantages are mostly
common to this study: e.g., resistance to analysis, reverse
engineering, and injection attacks. The following para-
graphs provide a close look at instruction set randomization.

Barrantes et al. [13], [14] proposed to scramble instruc-
tions on memory by XORing instruction sequence with
pseudo-random sequence. Scrambled instructions are un-
scrambled when they are fetched from external memory.
Barrantes et al. named this scheme RISE (Randomized In-
struction Set Emulation), though what is actually done here
is memory randomization rather than instruction set ran-
domization. Since they assumed the use of existing mi-
croprocessors, RISE adopts an emulator with binary-code
translator for program execution, which involves significant
performance overheads. This study, on the other hand, pro-
poses a hardware-supported approach to instruction set di-
versification with modest overhead. Detailed evaluation re-
sults of our scheme will be presented in Sect. 6.

Kc et al. [15] proposed two methods for instruction set
randomization. One is to scramble the instruction sequence

by XORing a secret key, and the other is to randomly trans-
pose all the bits within the instruction. The former method
is similar to RISE, and is a memory scramble technique
rather than instruction set randomization. The latter can
be interpreted as instruction set randomization, if the length
of instructions is fixed within the target architecture. The
present study, however, presents a new method for instruc-
tion set randomization, which incurs less overhead than Kc’s
bit-transposition (as shown in Sect. 6). Our method can be
applied to any architectures, while Kc’s bit-transposition is
not simply applicable to architectures of variable instruction
lengths. Although our method and bit-transposition are both
substitution ciphers, our approach is superior to Kc’s meth-
ods because it has a larger degree of freedom. The quantita-
tive evaluations of this aspect will be discussed in Sect. 4.

3. Processor Personality

Diversification of instruction set architecture may include
any combinations of various diversifications; e.g., diversity
of register sets, instruction formats, and data representa-
tions. However, all diversified processors have to guarantee
a predefined specification (e.g., logic scale, operational fre-
quency, power consumption, and reliability), which is quite
difficult in general cases. Also, it practically means that we
have to generate the custom software tools (e.g., OS kernel,
assembler, linker, and compilers) automatically for each in-
struction set. Thus, such extreme approaches are practically
impossible or too expensive.

In this study, as a more practical alternative, we pro-
pose to change the encoding of instructions without modify-
ing the instruction formats. For an example, let us consider
a processor P1 that provides ADD instruction (opcode = 1)
and SUB instruction (opcode = 2). Here, we can consider
another processor P2, which is a twin of processor P1 ex-
cept that the respective opcodes of ADD and SUB are 2 and
1 in P2. Although the expressions of an instruction sequence
are different for P1 and P2, they have exactly the same ar-
chitecture including the length of instruction sequence, data
representation, memory access, conditional branch, and ex-
ception handling. In the following discussion, the difference
of P1 and P2 is referred to as processor personality. In other
words, processor personality P2 is a derivative of the origi-
nal personality P1.

The instruction sequence for a personality can be eas-
ily converted to the corresponding representation of another
personality, and the derived software is as reliable as the
original. Hence, we only have to prepare a simple binary-
converter for each personality, and all other software tools
can be shared via binary conversion. The logic scales and
operational frequencies of P1 and P2 are expected to be
comparable, because the architecture is common in both
personalities. The evaluation results of this point are pre-
sented in Sect. 6.

From the hardware point of view, the logic circuit of
instruction decoder is slightly different in P1 and in P2. By
implementing the mapping of opcode with RAM/ROM, two
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or more personalities can share the same hardware, which
is preferable for manufacturing. It is also possible to im-
plement a processor that accommodates multiple personali-
ties by using large mapping RAM, where the processor per-
sonality can be switched dynamically. Although Barrantes
[13], [14] and Kc [15] mentioned changing the way of ran-
domization for each process, it is equally possible to provide
similar functionality with mapping-RAM implementation of
our scheme.

Another advantage of our approach is that an arbitrary
subset of instructions may be selectively randomized. For
example, it is possible to randomize privileged instructions,
while leaving non-privileged instructions intact. In this case,
the OS kernel becomes dependent on a specific personality,
while any user programs stay portable among the person-
alities of the same architecture. It is also possible to ran-
domize floating-point instructions and application-specific
instructions (e.g., DSP instructions), while leaving integer
instructions as they are. System vendors may provide high-
performance applications that are dependent on a specific
personality, while providing generic low-performance ver-
sions of the same functionality by using floating-point and
application-specific operations emulated by integer opera-
tions. Such a framework might be beneficial to distribute
commercial application programs. Needless to say, any pro-
grams become personality-dependent if all instructions are
randomized.

Although our approach is best suited to soft processor
cores on FPGA technology, it is also applicable to emulation
technologies, such as Java VM [16] and Transmeta Code
Morphing [17]. Our approach is completely orthogonal
and cooperative with the existing randomization schemes
of Barrantes et al. [13], [14] and Kc et al. [15]. Memory
encryption and MAC verification may be simultaneously
adopted with our scheme, making it both very practical and
widely applicable.

4. Redundancy of Instruction Set

This section examines the number of personalities which
are derivable from an instruction set architecture. If an in-
struction set architecture involves a large degree of freedom
(or redundancy), it can yield a large number of personali-
ties. Thus, the degree of freedom is regarded as a security
measure of our scheme. The degree of freedom might also
be interpreted as a factor in implementation cost, because
it specifies the lower bound of information to designate a
personality of an architecture. In the following evaluations,
four instruction set architectures are examined: MIPS [18]
(Release 1), an example of 32-bit architecture; Renesas SH-
3 [19], a 16-bit architecture; Intel 8080 [20] and Java VM
[16], 8-bit architectures.

Figure 1 illustrates the instruction formats of MIPS ar-
chitecture [18]. The opcode field designates the instruction
format and the operation of an instruction. In MIPS archi-
tecture, the length and the position of the opcode field are
fixed. In R-type instructions, the function field is used with

Fig. 1 MIPS instruction format [18].

the opcode filed to designate a specific operation. The rs, rt,
and rd fields designate operand registers, while the imme-
diate field contains an immediate operand in I-type instruc-
tions.

Although the instruction format of MIPS is simple, it is
not the case in general. In some architectures, the length of
the opcode is variable, and part of opcode (or auxiliary field)
appears at different positions in different formats. Thus,
this study imposes the following restriction in the following
evaluations; the opcode values are exchanged only among
the same field of the same format. For example, the opcode
values of J-type instructions (Fig. 1) might be interchange-
able, while the opcode values of I-type in the original archi-
tecture are not considered for J-type instructions in a new
personality. With I-type instructions, the values of function
field are interchangeable only among the instructions of the
same opcode value.

This restriction is not only natural from the hardware
point of view, but rather required to evaluate various archi-
tectures in equal conditions. The results shown in this sec-
tion should be hence considered moderate, and it might be
possible to extract a larger degree of freedom from an in-
struction set by removing this restriction (i.e., by exchang-
ing opcode values across instruction formats). Encoding and
locations of operand descriptors might also be used for di-
versification, but they are not counted in this study.

The undefined opcodes in the instruction set specifica-
tion are automatically excluded from the degree of freedom
by the above restriction, because the instruction format is
not defined for undefined instructions. Anyway, the unde-
fined instructions do not appear in general programs, and do
not contribute to increasing diversity.

Table 1 lists the evaluation results of the degree of free-
dom (F) of each instruction set. The corresponding informa-
tion capacity I is given by the equation I = �log2 F�, where
F is the degree of freedom. Table 2 summarizes the degrees
of freedom for typical instruction classes in each architec-
ture.

The degrees of freedom differ significantly among the
four instruction sets, while the numbers of available instruc-
tions are comparable. A longer instruction format does not
necessarily lead to a larger degree of freedom. Rather, in
this study, larger diversity is obtained from an architecture
with simple instruction formats, where a large number of
instructions (opcodes) are defined for each format. For ex-
ample, the opcodes of Java VM are 1-byte long for any kind
of instructions, in which 201 instructions are defined. Con-
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Table 1 Redundancy of four instruction sets.

Number of Redundancy Informa-
instructions tion [bit]

MIPS 170 2.34e+166 553
SH-3 188 1.63e+90 300
8080 111 2.34e+136 453

Java VM 201 1.59e+377 1253

Table 2 Redundancy in various instruction classes.

Arithmetic Data transfer Branch Control Privileged
MIPS 4.68e+21 1.29e+39 4.05e+18 2.00e+00 8.64e+03
SH-3 6.53e+28 9.06e+25 1.15e+03 5.76e+03 2.40e+01
8080 2.30e+10 1.55e+25 3.05e+29 4.03e+04 –

Java VM 2.65e+32 8.50e+101 2.59e+22 1.00e+00 –

sequently, the degree of freedom becomes very large; i.e.,
201! ≈ 1.59 × 10377. The great advantage of this scheme
is that a simple architecture can yield a very large degree of
freedom.

Kc et al. [15] proposed to obtain diversity by XORing
a 32-bit secret key to instructions. Evidently, the degree of
freedom of this method is limited to 232 ≈ 4.3 × 109. Kc
et al. [15] also proposed to transpose all the bits randomly
within a 32-bit instruction. The degree of freedom of this
method is 32! ≈ 2.63×1035, and the corresponding informa-
tion is approximately 118 bits. Although Kc’s methods and
ours are both substitution ciphers, our method can yield far
larger diversity and is consequently more resistant to brute-
force attacks than Kc’s methods in any of the four architec-
tures.

5. Design and Implementation

This section introduces sample designs of diversified pro-
cessors of MIPS architecture. As a basis of the following
discussion, a soft-core processor Plasma [21] was adopted.
Plasma supports a subset of MIPS (release 1) instruction set
and is publicly available as the VHDL source code, which
is favorable for diversification. MIPS architecture is often
adopted in actual embedded systems, and its simple instruc-
tion set is preferable for our experiments. The block dia-
gram of Plasma is illustrated in Fig. 2.

The current version of Plasma defines 94 instructions,
where 62 instructions are actually supported while 32 in-
structions are still unavailable. Since these are different
from the undefined instructions mentioned in Sect. 4, all 94
instructions are used for randomization in the following ex-
periments. The degree of freedom was thus calculated as
3.36 × 10112 for Plasma, which corresponds to 373 bits of
information.

The following five designs are examined in this study.

5.1 Original Design

The Original design is the original Plasma design, whose
functional block diagram is illustrated in Fig. 2†. Plasma
consists of six functional blocks: PC (program counter), IF

Fig. 2 Block diagram of original design.

(instruction fetch), ID (instruction decode), EX (execution),
MA (memory access), and memory.

5.2 Specialized Design

The Specialized design designates the designs derived from
the Original by randomly exchanging opcodes.

In the original Plasma source code, many literals are
embedded (or hard coded) in VHDL source files. Since this
is not favorable for our experiments, we modified the orig-
inal VHDL files and added a new VHDL file that defines
literals as constants. This modification enabled us to spe-
cialize the instruction set by preparing a new constant defi-
nition file. Each instance of Specialized design is thus gen-
erated through this file, which defines the literals randomly
exchanged according to our rules.

5.3 RAM-Mapped Design

The RAM-mapped design implements the mapping of op-
codes by RAM, consequently enabling changes of personal-
ity. The block diagram of the mapping part is illustrated in
Fig. 3.

In RAM-mapped design, the opcode of a diversified
processor is mapped to the original opcode by the Mapping
block (Fig. 3), which is located in series between the IF and
ID blocks. The opcode of a specialized instruction (op’) is
mapped to the original opcode (op) by RAM1, while RAM2
and RAM3 map the function field and the rt field, respec-
tively††. The repack part does not include any logic func-
tion; it just reconstructs 32-bit instructions by concatenating
bit fields. The repack block outputs the following three pat-
terns of instructions.

Case I: The opcode field is mapped, while leaving other
fields intact. Typically selected for J-type instructions.

Case II: The opcode and function fields are mapped, while
leaving other fields intact. Typically selected for R-
type instructions.

Case III: The opcode and rt fields are mapped, while leav-
ing other fields intact. Typically selected for REGIMM
instructions [18]. REGIMM instructions are a kind of
I-type instruction, whose opcode value is 1. REGIMM
instructions interpret the rt field as an auxiliary field.
†It should be noted that this diagram is different from the phys-

ical block diagram, which is found in Plasma document [21].
††These fields are illustrated in Fig. 1.
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Fig. 3 Partial block diagram of RAM-mapped design.

Fig. 4 Partial block diagram of XOR design.

Typical examples of REGIMM instructions are BLTZ
and BGEZ instructions.

The output selector in Fig. 3 selects the appropriate one from
the above three cases, according to the opcode value. The
selection is given by RAM1, since it is indexed by the op-
code field.

As seen from the above descriptions, the Mapping
block partially decodes instructions. Thus, the function of
the Mapping block might be integrated in the ID block, be-
cause the interpretation of opcode is an intrinsic function
of ID block. However, in the present study, we chose to
make the Mapping block portable and independent from ID
to keep the modification minimal. This decision was justi-
fied because our target architecture was simple. For more
complicated architectures, the Mapping block should be in-
tegrated in the ID block to reduce the complexity and redun-
dancy.

5.4 XOR Design

The XOR design includes a bitwise XOR function with a
32-bit key register between IF an ID blocks (Fig. 4), which
literally implements the randomization process that was pro-
posed by Kc et al. [15].

Fig. 5 Design of bit-shuffling logic.

5.5 Bit-Shuffle Design

The Bit-shuffle design includes a bit-shuffling block, which
is simply inserted between ID and IF blocks of the Original
design. This bit-shuffling block was implemented with 32
multiplexers of 32 inputs and 160-bit register for 5-bit select
inputs of 32 multiplexers, exactly as Kc et al. [15] proposed.
The block diagram of the bit shuffling block is summarized
in Fig. 5.

6. Evaluation

This section examines the implementation cost and perfor-
mance overhead of diversified processors with FPGA tech-
nology. Xilinx Spartan3 FPGA [22] was adopted as the im-
plementation platform in this section. The functions of di-
versified processors were actually verified on an evaluation
board (Xilinx Spartan3 Starter Kit) with XC3S200 device.

Table 4 summarizes the design results of five designs,
where the optimization option of logic synthesis was set
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to “Speed” to maximize performance. The evaluation en-
vironment is summarized in Table 3. The unit of re-
sources is “Slice” in Spartan3 FPGA, and Slices consist of
logic resources (SliceL) and distributed memory resources
(SliceM). Spartan3 FPGA also provides another kind of
memory resource (BlockRAM), which is suited to data stor-
age. For example, Mapping RAMs (RAM1, RAM2, and
RAM3) in Fig. 3 were implemented with SliceM, while the
main memory of Plasma was implemented with BlockRAM
(“memory” in Fig. 2). Table 4 lists the number of Slice,
SliceM, BlockRAM, and AT product of each design. AT
product (Area-Time product) is defined by the product of
logic scale (slices) and latency (cycle time), or the quotient
of logic scale divided by operational frequency, which is
often used as a measure of cost-effectiveness. Since the
logic scale is a good measure of implementation cost, a
smaller AT product naturally means lower cost per unit per-
formance.

In Table 4, the result of Specialized design represents
the average value of 100 randomly specialized processors.
With regard to Slice, the average value was 2009 slices,
where the minimum and maximum values were 1868 and
2117 slices, respectively. The operational frequencies were
distributed between 31.1 an 37.9 MHz, which means the ex-
ecution time might deviate maximally 10% from the average
in a specialized design. The deviations of logic scale and ex-
ecution time were modest, and seem acceptable for practical
applications.

Though RAM-mapped is comparable to Specialized in
logic scale, its operational frequency is 8.5% lower than
Specialized. This is a logical consequence of our imple-
mentation, which has the Mapping block in series between
IF and ID blocks (Fig. 3). The performance overhead is ex-
pected to be reduced, if the mapping logic is integrated in

Table 3 Evaluation environment.

CPU AMD Athlon XP 2500+
Memory 1 GB

OS Windows XP SP2
CAD software Xilinx ISE 8.2i
Target device XC3S2000 -4 FG456

Table 4 Evaluation results of five designs (optimization option: Speed).

Slice (SliceM) BlockRAM Freq. [MHz] AT prod. [slice·µs] Synthesis [s]
Original 1911 (128) 4 35.3 54.1 437
Specialized (avg.) 2009 (128) 4 34.1 58.9 479
RAM-mapped 1979 (128) 4 31.2 63.4 461
XOR 1887 (128) 4 34.2 55.2 494
Bit-shuffle 2139 (192) 4 33.2 64.4 522

Table 5 Evaluation results of five designs (optimization option: Area).

Slice (SliceM) BlockRAM Freq. [MHz] AT prod. [slice·µs] Synthesis [s]
Original 1481 (128) 4 19.3 76.6 302
Specialized (avg.) 1522 (128) 4 17.9 85.0 336
RAM-mapped 1526 (128) 4 17.4 87.7 380
XOR 1513 (128) 4 18.1 83.6 369
Bit-shuffle 1675 (192) 4 18.1 92.5 380

the ID block.
The usage of SLICEM is of interest. For example,

Original and RAM-mapped designs use the same number
of SLICEMs. RAM-mapped design has the Mapping block
added to Original, and the Mapping block should include
some SLICEM for mapping RAM. Therefore, it is natural
for RAM-mapped design to use more SLICEM resources
than Original, though the evaluation result is different. An-
other example is that a certain amount of SLICEM is in-
cluded in Original, Specialized, XOR, and Bit-shuffle de-
signs, though none of these designs uses SLICEM resources
explicitly. The fact is that most SLICEM resources are auto-
matically generated by logic synthesis software. All of the
above phenomena are the consequence of the optimization
process by logic synthesis, which utilizes memory resources
to derive optimal results whenever possible†.

The XOR design is expected to be larger than the Orig-
inal design in logic scale, since the XOR design additionally
includes a key register and a bitwise XOR circuit between
IF and ID blocks of the Original design. Thus, it may seem
strange that the logic scale of XOR is 1.25% smaller than
that of Original in Table 4. However, it is only the conse-
quence of the optimization option “Speed,” which trades the
logic scale for higher operational frequency. Table 5 sum-
marizes the evaluation results with the optimization option
“Area,” which minimizes the usage of hardware resources.
In Table 5, the XOR design shows a 3.0% increase of logic
scale as we expected. Since the significant slowdowns were
observed with the “Area” option, we have adopted the re-
sults with the “Speed” option (Table 4) in the above discus-
sion.

The synthesis times of each design are almost compara-
ble (Tables 4 and 5). Here, it should be noted that a Special-
ized design requires its synthesis time for each instance of
diversified processors, while the other four designs require
the synthesis time only once.

In conclusion, the overhead of diversification is in-
significant. As shown in Table 4, Specialized design incurs

†Any logic functions can be implemented with memory re-
sources; this is the principle of contemporary FPGA devices.



ICHIKAWA et al.: DIVERSIFICATION OF PROCESSORS BASED ON REDUNDANCY IN INSTRUCTION SET
217

a 5.1% increase of logic scale with a 3.4% loss of opera-
tional frequency, while RAM-mapped design incurs a 3.6%
increase of logic scale with a 11.6% loss of operational fre-
quency. On the other hand, Kc’s XOR design incurs a 3.1%
loss of operational frequency with almost the same amount
of logic circuit as Original. Kc’s Bit-shuffle requires more
logic than Specialized and RAM-mapped designs (11.9%
increase over the Original) with a modest loss of operational
frequency (5.9% loss over the Original). Considering the
large difference in the degree of freedom shown in Sect. 4,
Specialized and RAM-mapped designs are regarded as su-
perior to XOR and Bit-shuffle designs.

7. Discussion

7.1 Conditions and Limitations

In many embedded systems, cost is a matter of highest pri-
ority. The logic scale and memory capacity of the system
are thus tightly restricted in the name of price competitive-
ness. This often results in modest performance of processor
with low clock frequency, small (or sometimes no) cache
memory, and low-bandwidth of main memory. Such sav-
ings are accumulated cent by cent over every component of
the system. In such systems, any possible overhead must be
avoided in both clock cycles and memory usage in order to
satisfy the system requirements.

Memory encryption (e.g., XOM [2]) is a reliable ap-
proach to secure systems, which is based on cryptography
theory. A serious problem of this approach is that crypto-
graphic circuit requires a substantial amount of resources.
For example, Rouvroy et al. [23] presented a very compact
AES circuit, which requires 163 slices on a XC3S50 de-
vice for 208 Mbps throughput. Good and Benaissa [24]
presented a high-performance AES circuit, which requires
17425 slices on XC3S2000 for 25 Gbps throughput. Al-
though it is highly dependent on implementation details,
the resource requirement of a practical AES circuit is far
from negligible in general cases†. Another problem is that
memory encryption inevitably incurs increased memory ac-
cess latency, which leads to substantial degradation of per-
formance. This problem might be avoided by implement-
ing a large cache memory, which would be too expensive
for cost-sensitive embedded applications. Thus, the mem-
ory encryption approach would be better suited for security-
oriented applications, while our approach is more suited to
cost-sensitive embedded systems.

In case of RISE [13], [14], a binary code is XORed with
the pseudorandom sequence that is as long as the whole pro-
gram text. RISE decodes the whole encrypted binary code
at loading time, and stores the plain binary code in the in-
ternal memory for execution. Though this mechanism could
be implemented by hardware to avoid loss in performance,
it requires a large internal memory that could contain the
whole program image. This will raise the system cost sub-
stantially. On the other hand, our approach is free from such
problems.

7.2 Possible Attacks

Both our scheme and Kc’s XOR scheme are a kind of simple
substitution cipher, which preserve the statistical properties
of the original instruction sequence. Such properties could
be exploited by frequency analysis in a ciphertext-only at-
tack.

Possible attacks on the Kc’s XOR scheme might be
conducted as follows. The opcode of MIPS instruction is
6-bit long, which resides at the same position in all instruc-
tions (Fig. 1). This practically means that the effective key
length is only six bits for opcode, and the corresponding
part of the key can be analyzed independently by analyzing
the frequencies of opcode values. Once the opcode (or the
corresponding part of the key) is revealed, the instruction
format is determined. R-type instructions are particularly
preferable for frequency analysis, since it consists of short
fields of 5- or 6-bits long, each of which can be analyzed in-
dependently and easily. The burden of analysis will be much
alleviated by heuristics, as shown in the following examples
[18].

• Specific fields are set to be constant in some instruc-
tions. For example, the sa field is always set to zero in
ADD (add word) and SUB (subtract word) instructions.
• In most cases, the rs field of JR (jump register) instruc-

tion is 31 in MIPS binary code, because JAL (jump and
link) instruction automatically saves the return address
into a specific register (R31).

Although the XOR design might look good in both logic
scale and operational frequency in Tables 4 and 5, it is vul-
nerable and inadequate for practical applications.

Though our scheme also suffers from frequency anal-
ysis, it is not as simple as in the XOR scheme. In the
XOR scheme, any instruction can be decoded, once the key
is identified by frequency analysis. On the other hand, in
our scheme, each opcode value has to be identified indepen-
dently to a specific instruction. Thus, even if one instruc-
tion is identified, other instructions remain unknown. This
difference is a logical consequence of the larger degree of
freedom of our scheme.

Since a simple substitution cipher is not reliable
enough, transposition or permutation is often adopted to-
gether with substitution. To complement our scheme, it is
worth considering transposing instruction bits randomly for
each instance of diversified processors to obfuscate the po-
sition of the opcode field. This will raise the degree of free-
dom by 118 bits, as described in Sect. 4. Bit transposition re-
quires no additional cost, because it is simply implemented
by wiring without logic gates. Though the Bit-shuffle de-
sign in Sect. 6 incurs much overhead, it was caused by the
multiplexers needed to change bit positions arbitrarily.

It is also worth considering XORing instruction word

†More information on cryptographic circuits on FPGA can be
found in a comprehensive survey by Wollinger et al. [25]
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with a constant, randomly generated for each instance of di-
versified processors. This will adjust the distribution of ones
and zeros in instruction bits, consequently making it more
difficult to analyze a personality. This will raise the degree
of freedom by 32 bits with a minimal increase of logic scale
(avg. 16 inverters).

Another concern is that an attacker may infer a per-
sonality from another personality. If an attacker managed
to acquire two corresponding object images of the same in-
struction sequence for two different personalities, it is pos-
sible for the attacker to make the list of the corresponding
opcodes of two personalities by examining the differences
of two object images. If the common object code was long
enough to include all (or most) instructions of target archi-
tecture, the derived list will enable the attacker to convert
arbitrary object code from one personality to the other per-
sonality. Moreover, if one personality is cracked by the at-
tacker, the other personality might be inferred with this list.

There are two ways of avoiding this problem. One is to
diversify the instruction sequence for each system, and the
other is to disturb the object code comparison. Various tech-
niques for software diversification have been already dis-
cussed by Forrest et al. [1]; e.g., permuting the order of basic
blocks yields a large degree of freedom [26], [27]. Proces-
sor diversification does not conflict with software diversifi-
cation techniques; it is rather recommended to adopt these
two together, whenever necessary. On the other hand, the
encryption of memory image (e.g., XOM [2] and RISE [14])
will prevent attackers from comparing binary codes of two
personalities. All these techniques might be adopted to-
gether, carefully considering the trade-offs between security
and cost on a case-by-case basis. It should be noted that our
scheme alone cannot provide excellent security.

Although processor diversification cannot resolve this
problem individually, it never means that processor diversi-
fication is useless. Software diversification itself does not
prevent the attacker from software piracy, but it is proces-
sor diversification that disturbs software piracy. It is also
processor diversification that protects the system from hi-
jacking, because the attacker has to analyze the personality
before writing new malicious software for the target system.
Meanwhile, software diversification serves to protect diver-
sified processors from the analyses by malicious attackers.

7.3 Securing Configuration

In case of a diversified processor, it is difficult to analyze or
plagiarize the software, even if memory images are stolen.
However, if the processor design itself is stolen and dupli-
cated, the software may be utilized as a black box. Though it
is impossible to write new software without knowing the in-
struction set, it might be analyzed from the stolen processor
design. This poses a very serious problem for FPGA imple-
mentation, because it is very easy to duplicate a processor
by tapping or stealing the configuration data. Since it is par-
ticularly easy if the configuration data are stored in external
memory devices, securing configuration data is essential for

our objective.
Recent FPGA devices often support design security

features. For example, LatticeXP FPGA [28] provides an
on-chip non-volatile memory for configuration data, which
secures the design against tapping. Altera Stratix II FPGA
[29] supports AES encryption of configuration data, where
the 128-bit key is kept secure in an on-chip non-volatile
memory. The encrypted configuration data cannot be an-
alyzed nor plagiarized without the secret key, even if the
configuration data are stored in external memory. Actel
ProASIC3 FPGA [30] provides both an on-chip non-volatile
memory and 128-bit AES encryption for configuration data.
Our scheme is best suited to such devices that provide de-
sign security features.

In XOM [2] and RISE [13], [14], the system is pro-
tected by a key. If the key is stolen by an attacker, the
software may be copied, analyzed, and modified freely by
the attacker. The attacker might take control of the whole
system through the key. In our scheme, the configuration
data of FPGA must be protected against attackers. How-
ever, even if the configuration data are stolen by any means,
they are not as portable as software. Since the configuration
data are device-dependent, they only work on the original
target device. The configuration data are also dependent on
the design of the circuit board, since they include pin assign-
ment information to interface with various external circuits.
Thus, the configuration data are not as convenient as cryp-
tographic keys for attackers.

Though it is theoretically possible to analyze the in-
struction set architecture by reverse-engineering the config-
uration data, it would take a substantial amount of work.
Moreover, such effort would have to be repeated for each
personality. Considering all these things, our scheme does
not seem an easy target for attackers in practical situations.
RAM-mapped design might seem relatively easy to analyze,
but it would be more resistant to reverse-engineering if the
Mapping block is integrated with the ID block.

8. Conclusion

This study presented a new method to diversify processor
architecture by changing the encoding of opcode, while pre-
serving the function of the original instruction set architec-
ture. Our method provides genuine instruction set random-
ization, which has not been realized to date in preceding
studies. Our method also provides a larger degree of free-
dom, and thus it is more secure than the preceding studies.

The evaluation results on FPGA indicated that the over-
head of our scheme is modest; with the RAM-mapped de-
sign, the overhead was 3.6% in logic scale and 11.6% in
performance over the original Plasma. We thus conclude
that processor diversification based on instruction set redun-
dancy is a promising scheme for software protection in em-
bedded systems, particularly when implemented with FPGA
technology.

It is possible and desirable to adopt our method in com-
bination with the preceding methods for more security, since
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our method is independent of, yet compatible with, them.
Although this study presented a new method of diversifying
instruction set architecture, it has specific preconditions and
limitations, like any other scheme. Designers must adopt a
number of schemes together to secure a system in practical
situations. This must be done very carefully and on a case-
by-case basis.
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