AES 暗号と Camellia 暗号に対する暗号鍵を固定し たハードウェア特殊化回路

松岡 俊佑^{†a)}(正員) 日野 善規^{††}

市川 周一^{†††}(正員:シニア会員)

Hardware Specialization for Key Specific AES and Camellia Cipher Circuit

Shunsuke MATSUOKA^{†a)}, Member, Yoshiki HINO^{††}, Nonmember,

and Shuichi ICHIKAWA $^{\dagger\dagger\dagger}, \ Senior \ Member$

Asahikawa National College of Technology, Asahikawa-shi, 071–8142 Japan

†† 中部電力株式会社,名古屋市

CHUBU Electric Power Co., Inc., Nagoya-shi, 461–8680 Japan

††† 豊橋技術科学大学,豊橋市

Toyohashi University of Technology, Toyohashi-shi, 441–8580 Japan

a) E-mail: matsuoka@asahikawa-nct.ac.jp

あらまし AES 暗号と Camellia 暗号について,暗 号鍵を定数に固定した回路を設計し, FPGA による実 装評価を行った.その結果,従来回路と比較して論理 規模が削減され,最大動作周波数が改善された.

キーワード AES 暗号, Camellia 暗号, FPGA, ハードウェア特殊化

1. まえがき

ソフトウェアプログラミングにおいて,実行する前 から一部の入力値が既知である場合、その値を用い て実行前にあらかじめプログラムコードを最適化し ておくことで、実行時間を短縮することができる.こ うしたプログラミング技術のことを部分評価 (Partial Evaluation), あるいはプログラム特殊化 (Program Specializer) という [1], [2]. ハードウェア回路に対し ても同様な手法が適用できる. 論理回路においても入 力の一部が一定値であるならば、部分評価により内部 の回路を最適化することで回路規模が削減でき,動作 速度が改善できる (ハードウェア特殊化). ただし、ソ フトウェアと異なりハードウェア回路では内部回路が 容易に変更できないため、特殊化技術を適用した場合, ある入力値に対してのみの専用回路となり、異なる入 力値に対しては別の回路を新たに生成しなければなら ない. したがって、ハードウェア特殊化回路を実装す るには、FPGA に代表されるような再構成可能論理デ バイスが適している.

本研究では,共通鍵暗号に対してハードウェア特殊 化技術を適用した暗号回路を設計し,FPGA による 実装評価を行う.共通鍵暗号には様々な暗号アルゴリ ズムがあるが,米国政府標準暗号の DES や AES が 最も広く利用されている.日本国産暗号では電子政 府推奨暗号 (CRYPTREC) や, ISO/IEC 国際標準暗 号,インターネット標準暗号 (IETF) に選定されてい る Camellia 暗号がある.

本研究の目的は、Camellia 暗号回路について暗号鍵 を一定値に固定したハードウェア特殊化回路を評価す ることである. AES 暗号や DES 暗号のハードウェア 特殊化回路は先行研究 [3], [4] にて提案されているが、 本研究では先行研究と比較するため AES 暗号回路を 再設計した. 更に AES と Camellia のハードウェア特 殊化回路を Xilinx FPGA で定量的に評価した.

2. Camellia 暗号アルゴリズム

Camellia 暗号は,2000年にNTTと三菱電機株式 会社によって開発された共通鍵暗号アルゴリズムであ る.ブロック長は,128 bit,192 bit,256 bit から選 択できる.ここでは鍵長が128 bit の場合の Camellia 暗号アルゴリズムについて述べる.なお詳細について は文献[5]を参照されたい.

Camellia のデータ処理部は、Feistel 構造を採用し ており、128 bit のデータを 64 bit ずつ分割し、左右に データを入れ換えながら全 18 ラウンドの処理を繰り返 していく、第 1 段目のラウンド処理の前には排他的論 理和処理 (Pre-Whitening)、及び最終ラウンド処理の 後には排他的論理和 (Post-Whitening) が実行される. また、6 ラウンドと 12 ラウンドの後には FL^+/FL^- 関数が実行される.ラウンド処理の内部は F 関数と排 他的論理和から構成されている.F 関数は次式で定義

図 1 Camellia の暗号化処理過程(鍵長 128 bit) Fig. 1 Encryption process of Camellia for 128 bit key.

1696 電子情報通信学会論文誌 D Vol. J94-D No. 10 pp. 1696-1700 ⓒ(社)電子情報通信学会 2011

[†]旭川工業高等専門学校,旭川市

図 2 Camellia の副鍵生成過程(鍵長 128 bit) Fig. 2 Sub key generating process of Camellia for 128 bit key.

される.

$$Y_{(64)} = P\left(S\left(X_{(64)} \oplus k_{(64)}\right)\right) \tag{1}$$

上式の k は鍵生成部で暗号鍵をもとに生成される 64 bit の副鍵を示している. P 関数は副鍵との排他的 論理和処理と,8ビット入力8ビット出力の非線形変 換である八つの S 関数からなる.

鍵生成部ではデータ処理部と同じくラウンド処理 を繰り返していく(図 2). 図中の KL は入力暗号鍵 を示している.F 関数には 128 bit の定数 ($\Sigma_1 \sim \Sigma_4$) を入力する.生成した中間鍵 KA を 15 bit,あるいは 17 bit ローテーションシフトすることで全 26 個の副 鍵 (kw₁~kw₄, kl₁~kl₄, k₁~k₁₈) が生成される.

3. Camellia 暗号回路

共通鍵暗号回路のアーキテクチャ方式として, 各ラ ウンド処理の間にレジスタを配置し全ラウンド処理を パイプライン処理していくアンロール型アーキテク チャ[6] や、各ラウンドでは同じ処理が繰り返される ことから、1 ラウンド分を処理する回路だけ用意しレ ジスタに中間値を保存しながら繰り返しループさせ るループ型アーキテクチャ[7],[8] がある.ここでは, ループ型アーキテクチャ方式を対象としてハードウェ ア特殊化回路を設計する.本研究では、青木らによっ て設計されたループ型 Camellia 暗号回路 [9] を評価 の基本 (original) として用いることにした. 図3は, original 回路のブロック図を示している. データレジ スタ (Data_reg) への入力をマルチプレクサで切り換 え、Ex-OR、ラウンド処理回路、FL 関数回路にて順 次処理していくことにより暗号化と復号がそれぞれ 23 クロックで実行される. 各処理の入力として用いられ

図 3 ループ型 Camellia 暗号回路 Fig. 3 Camellia encryption circuit by loop architecture.

る副鍵は, 鍵拡張部 (Key Scheduler) で生成される. 鍵拡張部は,入力暗号鍵を格納するレジスタ KL と, 鍵拡張処理によって生成される中間鍵を格納するレ ジスタ KA,及び各レジスタの出力を 15 bit,または 17 bit 左右にローテンションシフトさせるシフターか らなどから構成される.中間鍵を生成する際に,デー タ処理部と同じくラウンド処理が繰り返し実行される が,この処理には,暗号化・復号で用いられるラウン ド処理回路が共用されている.

4. Camellia 暗号回路のハードウェア特殊化

4.1 副鍵固定回路 (fixed_subkey)

青木らのループ型 Camellia 暗号回路 (original) を もとに、入力暗号鍵を定数に固定したハードウェア特 殊化回路を2種類提案する.まず、一つ目の回路とし て、入力暗号鍵が決まれば26 個の副鍵は事前に計算 できることから、全ての副鍵を定数に固定した副鍵固 定回路 (fixed_subkey)を提案する (図 4). original 回 路の鍵拡張部に置き換え、副鍵 ($kw_1 \sim kw_4$, $kl_1 \sim kl_4$, $k_1 \sim k_{18}$)を選択するマルチプレクサを配置する.

4.2 F 関数 Ex-OR 簡単化回路 (F_Func_xor_ collapse)

排他的論理和処理 (Ex-OR) は,一方の入力が '0' な らばもう一方の入力の値がそのまま出力され,一方 の入力が '1' ならばもう一方の入力の値が反転されて 出力される.すなわち,片方の入力を定数に固定する ことによって, Ex-OR 素子を省略または NOT 素子 に置き換えることができ,論理回路が簡単化できる. Camellia 暗号では式 (1) で示したとおり,F 関数内

図 4 副鍵固定回路 Fig.4 fixed_subkey circuit.

で副鍵との排他的論理和処理が行われている.ここで は、全ての副鍵をあらかじめ計算しておき定数に固定 することで、F 関数内の排他的論理和 (Ex-OR) を簡 単化した回路 (F_Func_xor_collapse) を提案する (図 5).また、鍵拡張部は副鍵固定回路と同じくマルチプ レクサで選択する方式とする.

5. AES 暗号回路のハードウェア特殊化

Camellia 暗号回路との比較のために,ここでは AES 暗号回路についても先行研究をもとにハードウェア特 殊化回路を設計した. AES 暗号は SPN 構造を採用 しているため,暗号化と復号で異なる回路が必要とな るが,ここでは暗号回路だけを対象として回路を設 計する.評価の基本 (original) として, Megarajan と Park のループ型 AES 暗号化回路 [10], [11] を用いる (図 6).全 11 ラウンドの処理が 11 クロックで実行 される. original 回路をもとに, Camellia 暗号回路 のハードウェア特殊化と同様な方法で,ラウンド鍵 を固定した回路 (fixed_roundKey),ラウンド鍵との 排他的論理和処理を簡単化した Ex-OR 簡単化回路 (xor_collapse) を設計した.

6. FPGA による実装評価

前章で述べた AES 及び Camellia のループ型暗号 回路とそのハードウェア特殊化回路を Xilinx 社製の FPGA である XC3S400A をターゲットデバイスとし て ISE11.1 を用いて論理合成及び配置配線した. 論理 合成オプションの設定項目の一つである Optimization Goal は Speed 優先と Area 優先の二つの条件につい てそれぞれ評価を行い,その他の設定項目はデフォル

図 5 F 関数簡単化回路 (F 関数内部) Fig. 5 F_Func_xor_collapse circuit in the F function.

図 6 Megarajan と Park のルーブ型 AES 暗号化回路 Fig. 6 Megarajan and Park's loop type AES encryption circuit.

トのままとする. EDA ツールの動作環境は, CPU が Intel Core2Duo T7250, メモリが 1 GByte, OS が Microsoft Windows XP Professional Service Pack2 の仕様の PC を用いた.

鍵を固定したハードウェア特殊化回路は、鍵の定数 値ごとに異なる回路が生成される. そこで、 ランダム な暗号鍵を100種類生成し、それぞれの暗号鍵ごと にハードウェア特殊化を行う. 生成された回路ごとに 論理合成・配置配線を行い、その平均値を評価結果と する. 鍵数は多い方が良いが、今回の実験では100個 で十分安定した結果が得られた.評価項目は,論理 規模 (Logic Scale), 最大動作周波数 (Max.Freq), ス ループット (Throughput) 及び, 論理合成・配置配線 にかかる時間 (Gene.time) とした. ハードウェア特殊 化回路では, 暗号鍵を入れ換えるたびに再実装する必 要があることから、回路生成時間が重要になる、以上 の評価環境で AES 暗号回路について論理合成・配置 配線した結果を表1に示す. Megaration の暗号 回路 (original) と比較して, 鍵を固定した回路 (fixed_roundKey, xor_collapse) では回路生成時間と

	Design	Gene.Time (sec)	Logic Scale (slices)	Max. Freq. (MHz)	AT Product (slice*msec)	Throughput (Mbps)				
speed	original	138	2327	154.9	15.0	1803				
	fixed_round_key	121	1683	129.5	12.9	1507				
	xor_collapse	120	1742	125.1	13.9	1455				
Area	original	129	1828	124.6	14.6	1450				
	fixed_round_key	109	1488	120.0	12.4	1396				
	xor_collapse	115	1627	109.8	14.8	1278				

表 1 AES 暗号回路の実装結果 Table 1 Implementation results of AES encryption circuit

表 2 Camellia 暗号回路の実装結果 Table 2 Implementation results of Camellia encryption circuit.

	Design	Gene.Time (sec)	Logic Scale (slices)	Max. Freq. (MHz)	AT Product (slice*msec)	Throughput (Mbps)
speed	original	177	1909	71.7	26.6	399
	fixed_sub_key	116	1404	123.0	11.4	685
	F_func xor_collapse	120	1498	147.6	10.1	821
Area	original	141	1751	66.1	26.4	368
	fixed_sub_key	103	1227	104.0	11.7	579
	F_func xor_collapse	119	1441	113.9	12.6	634

論理規模が改善され,動作周波数とスループットが若 干低下した.先行研究[4]と結果の傾向が異なるが, その理由はもとにした回路設計が異なること,特に SubBytes を BlockRAM で実装したか否かの差であ ると考えられる.本研究のように BlockRAM を用い ない場合, Look-up-table で SubBytes を実装するた め全体の slice 数が増大し,ハードウェア特殊化によ る削減効果が(相対的に)小さくなる.

面積時間積(AT 積)は、面積と性能のトレードオフを評価する指標で、小さいほどよい。AT 積を最小 化するのは Area 最適化で生成した fixed_round_key 回路で、original 回路の 86%に改善されている。先行 研究 [4] ほど劇的ではないが、AES 暗号回路における ハードウェア特殊化の効果が確認できた。

次に, Camellia 暗号回路の評価結果を表 2 に示 す. Speed 最適化でも Area 最適化でも, original 回路と比較して fixed_subkey と F_func_xor_collapse の論理規模は縮小し,動作周波数とスループット が大きく改善されている. 論理規模が最小化とな るのは fixed_sub_key (Area 最適)で, original に 対して論理規模が 30%削減されている. また性能 を最大化するのは F_func_xor_collapse (Speed 最 適)で, F_func_xor_collapse の動作周波数は original の 2.05 倍に達する. AT 積を最小化するのも F_func_xor_collapse (Speed 最適)で, original の 38% (62%削減) となっている. fixed_subkey の方が xor_collapse よりも回路規模に関しては改善効果が大 きかった.また、AES 暗号と比較すると、Camellia 暗号におけるハードウェア特殊化の効果は非常に大き い.これらのハードウェア特殊化回路による性能改善 効果の相違については、今後詳細に原因を調査する予 定である.

7. む す び

本研究では、Camellia 暗号回路について、暗号鍵を 定数に固定したハードウェア特殊化回路を提案した. その結果 Xilinx FPGA で論理合成・配置配線した結 果、ハードウェア特殊化する前の回路と比較して、回 路生成時間、論理規模、最大周波数、スループットと もに改善されることが確認できた.

献

文

- C. Consel and O. Danvy, "Tutorial notes on partial evaluation," Proc. 20th ACM Symposium on Principles of Programming Language, pp.493–501, 1993.
- N.D. Jones, "An introduction to partial evaluation," ACM Computing Surveys, vol.28, no.3, pp.480–503, 1996.
- [3] J. Leonard and W.H. Mangione-Smith, "A case study of partially evaluated hardware circuits: Keyspecific DES," Proc. FPL'97, LNCS 1304, pp.151– 160, Springer, 1997.
- [4] R. Atono and S. Ichikawa, "Design and evaluation of data-dependent hardware for AES encryption algorithm," IEICE Trans. Inf. & Syst., vol.E89-D, no.7, pp.2301-2305, July 2006.
- [5] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, "Specification of Camellia a 128 bit block cipher,"

https://info.isl.ntt.co.jp/crypt/camellia/specifications. html/01jspec.pdf, 2000.

- [6] D. Denning, J. Irvine, and M. Devlin, "A high throughput FPGA Camellia implementation," PhD Research In Micro-Electronics & Electronics, pp.25– 28, 2005.
- [7] H. Cheng and H. Heys, "Compact hardware implementation of the block cipher Camellia with concurrent error detection," Canadian Conference on Electrical and Computer Engineering, pp.1129–1132, 2007.
- [8] P. Yalla and J.P. Kaps, "Compact FPGA implementation of Camellia," Proc. FPL 2009, pp.658–661, 2009.
- [9] 東北大学青木研究室, "Camellia IP core," http://www. aoki.ecei.tohoku.ac.jp/crypto/web/cores.html, 2010.
- Megarajan and Park, http://islab.oregonstate.edu/ koc/ece575/03Project/, 2009.
- [11] M.B. Abdelhalim and H.K. Aslan, A Design for an FPGA Implementation of Rijndael Cipher, ICGST-PDCS, vol.9, pp.9–15, 2009.

(平成 23 年 2 月 23 日受付, 6 月 7 日再受付)